Dental Stem Cells SV40, a new cell line developed in vitro from human stem cells of the apical papilla.


Journal

International endodontic journal
ISSN: 1365-2591
Titre abrégé: Int Endod J
Pays: England
ID NLM: 8004996

Informations de publication

Date de publication:
Apr 2023
Historique:
revised: 24 12 2022
received: 04 12 2021
accepted: 26 12 2022
pubmed: 1 1 2023
medline: 15 3 2023
entrez: 31 12 2022
Statut: ppublish

Résumé

To establish and fully characterize a new cell line from human stem cells of the apical papilla (SCAPs) through immortalization with an SV40 large T antigen. Human SCAPs were isolated and transfected with an SV40 large T antigen and treated with puromycin to select the infected population. Expression of human mesenchymal surface markers CD73, CD90 and CD105 was assessed in the new cell line named Dental Stem Cells SV40 (DSCS) by flow cytometry at early and late passages. Cell contact inhibition and proliferation were also analysed. To evaluate trilineage differentiation, quantitative polymerase chain reaction and histological staining were performed. DSCS cell flow cytometry confirmed the expression of mesenchymal surface markers even in late passages [100% positive for CD73 and CD90 and 98.9% for CD105 at passage (P) 25]. Fewer than 0.5% were positive for haematopoietic cell markers (CD45 and CD34). DSCS cells also showed increased proliferation when compared to the primary culture after 48 h, with a doubling time of 23.46 h for DSCS cells and 40.31 h for SCAPs, and retained the capacity to grow for >45 passages (150 population doubling) and their spindle-shaped morphology. Trilineage differentiation potential was confirmed through histochemical staining and gene expression of the chondrogenic markers SOX9 and COL2A1, adipogenic markers CEBPA and LPL, and osteogenic markers COL1A1 and ALPL. The new cell line derived from human SCAPs has multipotency, retains its morphology and expression of mesenchymal surface markers and shows higher proliferative capacity even at late passages (P45). DSCS cells can be used for in vitro study of root development and to achieve a better understanding of the regenerative mechanisms.

Identifiants

pubmed: 36585930
doi: 10.1111/iej.13887
doi:

Types de publication

Journal Article

Langues

eng

Pagination

502-513

Subventions

Organisme : Fundació la Marató de TV3
ID : 202038-30
Organisme : MICIN AND FEDER
ID : PID2020-117278GB-I00
Organisme : NextGenerationEU"/PRTR
ID : PDC2021-121776-I00
Organisme : Universitat de Barcelona

Informations de copyright

© 2022 British Endodontic Society. Published by John Wiley & Sons Ltd.

Références

Ahuja, D., Teresa Sáenz-Robles, M. & Pipas, J.M. (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene, 24(52), 7729-7745.
Althumairy, R.I., Teixeira, F.B. & Diogenes, A. (2014) Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. Journal of Endodontics, 40(4), 521-525. Available from: https://doi.org/10.1016/j.joen.2012.06.018
Arslan, H., Ahmed, H.M.A., Şahin, Y., Doğanay Yıldız, E., Gündoğdu, E.C., Güven, Y. et al. (2019) Regenerative endodontic procedures in necrotic mature teeth with periapical radiolucencies: a preliminary randomized clinical study. Journal of Endodontics, 45(7), 863-872.
Artigas, N., Gámez, B., Cubillos-Rojas, M., Sánchez-de Diego, C., Valer, J.A., Pons, G. et al. (2017) P53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation. Cell Death and Differentiation, 24(12), 2022-2031.
Calo, E., Quintero-Estades, J.A., Danielian, P.S., Nedelcu, S., Berman, S.D. & Lees, J.A. (2010) Rb regulates fate choice and lineage commitment in vivo. Nature, 26(466), 1110-1114.
Chrepa, V., Pitcher, B., Henry, M.A. & Diogenes, A. (2017) Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. Journal of Endodontics, 43(4), 561-567.
Cui, D., Yu, S., Zhou, X., Liu, Y., Gan, L., Pan, Y. et al. (2021) Roles of dental mesenchymal stem cells in the Management of Immature Necrotic Permanent Teeth. Frontiers in Cell and Developmental Biology, 9, 666186.
da Silva, M., Lindolfo, P.C.C. & Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all post-Natal organs and tissues. Journal of Cell Science, 119(11), 2204-2213.
Darimont, C., Avanti, O., Tromvoukis, Y., Vautravers-Leone, P., Kurihara, N., Roodman, G.D. et al. (2002) SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth and Differentiation, 13(2), 59-67.
De Berdt , P., Vanacker, J., Ucakar, B., Elens, L., Diogenes, A., Leprince, J.G. et al. (2015) Dental apical papilla as therapy for spinal cord injury. Journal of Dental Research, 94(11), 1575-1581.
Diogenes, A. & Hargreaves, K.M. (2017) Microbial modulation of stem cells and future directions in regenerative endodontics. Journal of Endodontics, 43(9), S95-S101.
Dominici, M., le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S. et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8(4), 315-317.
El-Kateb, N.M., El-Backly, R.N., Amin, W.M. & Abdalla, A.M. (2020) Quantitative assessment of intracanal regenerated tissues after regenerative endodontic procedures in mature teeth using magnetic resonance imaging: a randomized controlled clinical trial. Journal of Endodontics, 46(5), 563-574.
Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I. & Frolova, G.P. (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6(2), 230-247.
Gámez, B., Rodríguez-Carballo, E., Graupera, M., Rosa, J.L. & Ventura, F. (2016) Class I PI-3-kinase signaling is critical for bone formation through regulation of SMAD1 activity in osteoblasts. Journal of Bone and Mineral Research, 31(8), 1617-1630.
García-Bernal, D., García-Arranz, M., Yáñez, R.M., Hervás-Salcedo, R., Cortés, A., Fernández-García, M. et al. (2021) The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy . Frontiers in Cell and Developmental Biology , 9 , 1 -18 .
Gong, M., Bi, Y., Jiang, W., Zhang, Y., Chen, L., Hou, N. et al. (2011) Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies. Journal of Biomedical Science, 18(1), 87. Available from: https://doi.org/10.1186/1423-0127-18-87
Gregory, C.A., Grady Gunn, W., Peister, A. & Prockop, D.J. (2004) An alizarin red-based assay of mineralization by adherent cells in culture: comparison with Cetylpyridinium chloride extraction. Analytical Biochemistry, 329(1), 77-84.
Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. & Shi, S. (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625-13630.
Heo, J.S., Choi, Y., Kim, H.S. & Kim, H.O. (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. International Journal of Molecular Medicine, 37(1), 115-125.
Huang, G.T.J., Gronthos, S. & Shi, S. (2009) Critical reviews in Oral Biology & Medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792-806.
Huang, Y., Yang, Y., Jiang, M., Lin, M., Li, S. & Lin, Y. (2015) Immortalization and characterization of human dental mesenchymal cells. Journal of Dentistry, 43(5), 576-582.
Jeon, B.G., Kang, E.-J., Kumar, B.M., Maeng, G.-H., Ock, S.-A., Kwack, D.-O. et al. (2011) Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplantation, 20(11-12), 1693-1705. Available from: https://doi.org/10.3727/096368911X565001
Khidr, L. & Chen, P.L. (2006) RB, the conductor that orchestrates life, death and differentiation. Oncogene, 25(38), 5210-5219.
Lee, K.S., Shim, J.S., Paik, M.J., Joo, W.H., Kim, S.H., Lee, G. et al. (2015) Characterization of a growth-elevated cell line of human bone marrow-derived mesenchymal stem cells by SV40 T-antigen. Biotechnology and Bioprocess Engineering, 20(3), 498-505.
Li, P., Wu, Y., Goodwin, A.J., Halushka, P.V., Wilson, C.L., Schnapp, L.M. et al. (2021) Generation of a new immortalized human lung pericyte cell line: a promising tool for human lung pericyte studies. Laboratory Investigation, 101(5), 625-635.
Li, X., Wang, L., Su, Q., Ye, L., Zhou, X., Song, D. et al. (2020) Highly proliferative immortalized human dental pulp cells retain the odontogenic phenotype when combined with a Beta-tricalcium phosphate scaffold and BMP2. Stem Cells International, 2020, 4534128.
Lin, L.M., Kim, S.G., Martin, G. & Kahler, B. (2018) Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy. Australian Endodontic Journal, 44(3), 292-299.
Liu, T.M., Ng, W.M., Tan, H.S., Vinitha, D., Yang, Z., Fan, J.B. et al. (2013) Molecular basis of immortalization of human mesenchymal stem cells by combination of P53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells and Development, 22(2), 268-278.
Lovelace, T.W., Henry, M.A., Hargreaves, K.M. & Diogenes, A. (2011) Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. Journal of Endodontics, 37(2), 133-138.
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G. et al. (2003) SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807-5812.
Mushahary, D., Spittler, A., Kasper, C., Weber, V. & Charwat, V. (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19-31.
Nagata, M., Ono, N. & Ono, W. (2021) Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell and Tissue Research, 383(2), 603-616.
Nagendrababu, V., Murray, P.E., Ordinola-Zapata, R., Peters, O.A., Rôças, I.N., Siqueira, J.F., Jr. et al. (2021) PRILE 2021 guidelines for reporting laboratory studies in endodontology: a consensus-based development. International Endodontic Journal, 54(9), 1482-1490.
Park, J.C., Kim, J.C., Kim, Y.-T., Choi, S.-H., Cho, K.-S., Im, G.-I. et al. (2012) Acquisition of human alveolar bone-derived stromal cells using minimally irrigated implant osteotomy: in vitro and in vivo evaluations. Journal of Clinical Periodontology, 39(5), 495-505.
Piñeiro-Ramil, M., Sanjurjo-Rodríguez, C., Castro-Viñuelas, R., Rodríguez-Fernández, S., Fuentes-Boquete, I.M., Blanco, F.J. et al. (2019) Usefulness of mesenchymal cell lines for bone and cartilage regeneration research. International Journal of Molecular Sciences, 20(24), 6286.
Piñeiro-Ramil, M., Castro-Viñuelas, R., Sanjurjo-Rodríguez, C., Rodríguez-Fernández, S., Hermida-Gómez, T., Blanco-García, F.J. et al. (2020) Immortalizing mesenchymal stromal cells from aged donors while keeping their essential features. Stem Cells International, 2020, 5726947.
Prosser, A., Scotchford, C., Roberts, G., Grant, D. & Sottile, V. (2019) Integrated multi-assay culture model for stem cell chondrogenic differentiation. International Journal of Molecular Sciences, 20(4), 951.
Ruparel, N.B., De Almeida, J.F.A., Henry, M.A. & Diogenes, A. (2013) Characterization of a stem cell of apical papilla cell line: effect of passage on cellular phenotype. Journal of Endodontics, 39(3), 357-363.
Ruparel, N.B., Teixeira, F.B., Ferraz, C.C.R. & Diogenes, A. (2012) Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. Journal of Endodontics, 38(10), 1372-1375.
Sánchez-de-Diego, C., Artigas, N., Pimenta-Lopes, C., Valer, J.A., Torrejon, B., Gama-Pérez, P. et al. (2019) Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program. iScience, 15, 79-94.
Seo, B.M., Miura, M., Gronthos, S., Mark Bartold, P., Batouli, S., Brahim, J. et al. (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149-155.
Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.-M., Zhang, C. et al. (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1(1), 1-8.
Toouli, C.D., Huschtscha, L.I., Neumann, A.A., Noble, J.R., Colgin, L.M., Hukku, B. et al. (2002) Comparison of human mammary epithelial cells immortalized by simian virus 40 T-antigen or by the telomerase catalytic subunit. Oncogene, 21(1), 128-139.
Trevino, E.G., Patwardhan, A.N., Henry, M.A., Perry, G., Dybdal-Hargreaves, N., Hargreaves, K.M. et al. (2011) Effect of Irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. Journal of Endodontics, 37(8), 1109-1115.
Yang, C., Li, X., Sun, L., Guo, W. & Tian, W. (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. Journal of Neural Engineering, 14(2), 026005.
Yang, Y.K., Ogando, C.R., Wang See, C., Chang, T.Y. & Barabino, G.A. (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 9(1), 1-14.
Yu, L., Xie, M., Zhang, F., Wan, C. & Yao, X. (2021) TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes. Stem Cell Research and Therapy, 12(1), 1-16.
Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S. et al. (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183(12), 1-27.

Auteurs

Diana Sanz-Serrano (D)

Department of Dentistry, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.

Cristina Sánchez-de-Diego (C)

Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA.
University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA.

Montse Mercade (M)

Department of Dentistry, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.
Researcher at IDIBELL Institute, L'Hospitalet de Llobregat, Spain.

Francesc Ventura (F)

Researcher at IDIBELL Institute, L'Hospitalet de Llobregat, Spain.
Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH