Cryopreservation of tissues by slow-freezing using an emerging zwitterionic cryoprotectant.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 01 2023
02 01 2023
Historique:
received:
16
05
2022
accepted:
07
11
2022
entrez:
2
1
2023
pubmed:
3
1
2023
medline:
5
1
2023
Statut:
epublish
Résumé
Cryopreservation of tissues is a tough challenge. Cryopreservation is categorized into slow-freezing and vitrification, and vitrification has recently been recognized as a suitable method for tissue cryopreservation. On the contrary, some researchers have reported that slow-freezing also has potential for tissue cryopreservation. Although conventional cryoprotectants have been studied well, some novel ones may efficiently cryopreserve tissues via slow-freezing. In this study, we used aqueous solutions of an emerging cryoprotectant, an artificial zwitterion supplemented with a conventional cryoprotectant, dimethyl sulfoxide (DMSO), for cell spheroids. The zwitterion/DMSO aqueous solutions produced a better cryoprotective effect on cell spheroids, which are the smallest units of tissues, compared to that of a commercial cryoprotectant. Cryopreservation with the zwitterion/DMSO solutions not only exhibited better cell recovery but also maintained the functions of the spheroids effectively. The optimized composition of the solution was 10 wt% zwitterion, 15 wt% DMSO, and 75 wt% water. The zwitterion/DMSO solution gave a higher number of living cells for the cryopreservation of mouse tumor tissues than a commercial cryoprotectant. The zwitterion/DMSO solution was also able to cryopreserve human tumor tissue, a patient-derived xenograft.
Identifiants
pubmed: 36593263
doi: 10.1038/s41598-022-23913-3
pii: 10.1038/s41598-022-23913-3
pmc: PMC9807565
doi:
Substances chimiques
Cryoprotective Agents
0
Dimethyl Sulfoxide
YOW8V9698H
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
37Informations de copyright
© 2023. The Author(s).
Références
Biomacromolecules. 2016 May 9;17(5):1882-93
pubmed: 27077533
Cryobiology. 2020 Jun;94:66-72
pubmed: 32339491
BMC Biotechnol. 2020 Aug 26;20(1):45
pubmed: 32843026
Hum Reprod. 2009 Jul;24(7):1670-83
pubmed: 19359339
J Am Chem Soc. 2017 Nov 15;139(45):16052-16055
pubmed: 28985068
Biomacromolecules. 2020 Aug 10;21(8):3017-3025
pubmed: 32659086
Neuropathol Appl Neurobiol. 1996 Dec;22(6):548-52
pubmed: 9004246
Nature. 1949 Oct 15;164(4172):666
pubmed: 18143360
Biomacromolecules. 2020 Jul 13;21(7):2864-2873
pubmed: 32501710
Biopreserv Biobank. 2014 Feb;12(1):23-34
pubmed: 24620767
Nature. 1985 Feb 14-20;313(6003):573-5
pubmed: 3969158
Hum Reprod. 1996 Jul;11(7):1487-91
pubmed: 8671490
Cryobiology. 2012 Aug;65(1):1-11
pubmed: 22569078
Transfus Med Hemother. 2019 Jun;46(3):173-181
pubmed: 31244585
Nat Rev Clin Oncol. 2012 Apr 17;9(6):338-50
pubmed: 22508028
ACS Biomater Sci Eng. 2019 May 13;5(5):2621-2630
pubmed: 33405767
Biophys J. 2002 Apr;82(4):1858-68
pubmed: 11916845
ACS Appl Bio Mater. 2018 Aug 20;1(2):356-366
pubmed: 35016379
BMC Biol. 2021 Mar 24;19(1):56
pubmed: 33761937
Int J Mol Sci. 2019 Jul 08;20(13):
pubmed: 31288388
Acta Histochem. 2020 Feb;122(2):151484
pubmed: 31902536
Sci Rep. 2019 Mar 8;9(1):3970
pubmed: 30850725
Neuropathol Appl Neurobiol. 2006 Aug;32(4):419-27
pubmed: 16866987
Nature. 1959 May 16;183(4672):1394-5
pubmed: 13657132
Biotechnol Bioeng. 2009 Nov 1;104(4):719-28
pubmed: 19593758
Biomacromolecules. 2019 Oct 14;20(10):3980-3988
pubmed: 31490670
Cancer Cell. 2015 Apr 13;27(4):574-88
pubmed: 25873177
Cryobiology. 2020 Dec;97:179-184
pubmed: 32562613