A MOPEVAC multivalent vaccine induces sterile protection against New World arenaviruses in non-human primates.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
11
04
2022
accepted:
27
10
2022
entrez:
5
1
2023
pubmed:
6
1
2023
medline:
10
1
2023
Statut:
ppublish
Résumé
Pathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs. Cynomolgus monkeys immunized with MOPEVAC
Identifiants
pubmed: 36604507
doi: 10.1038/s41564-022-01281-y
pii: 10.1038/s41564-022-01281-y
doi:
Substances chimiques
Vaccines, Combined
0
Antibodies, Neutralizing
0
Glycoproteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
64-76Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Charrel, R. N., de Lamballerie, X. & Fulhorst, C. F. The Whitewater Arroyo virus: natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae). Virology 283, 161–166 (2001).
doi: 10.1006/viro.2001.0874
Choe, H., Jemielity, S., Abraham, J., Radoshitzky, S. R. & Farzan, M. Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Curr. Opin. Microbiol. 14, 476–482 (2011).
doi: 10.1016/j.mib.2011.07.014
Ambrosio, A., Saavedra, M., Mariani, M., Gamboa, G. & Maiza, A. Argentine hemorrhagic fever vaccines. Hum. Vaccin. 7, 694–700 (2011).
doi: 10.4161/hv.7.6.15198
Enria, D. A., Briggiler, A. M. & Sánchez, Z. Treatment of Argentine hemorrhagic fever. Antiviral Res. 78, 132–139 (2008).
doi: 10.1016/j.antiviral.2007.10.010
Enria, D. A. et al. Candid#1 vaccine against Argentine hemorrhagic fever produced in Argentina. Immunogenicity and safety [in Spanish]. Medicina (B. Aires) 70, 215–222 (2010).
Albariño, C. G. et al. The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J. Virol. 85, 10404–10408 (2011).
doi: 10.1128/JVI.00856-11
York, J. & Nunberg, J. H. Epistatic interactions within the Junín virus envelope glycoprotein complex provide an evolutionary barrier to reversion in the live-attenuated Candid#1 vaccine. J. Virol. 92, e01682-17 (2017).
doi: 10.1128/JVI.01682-17
Aguilar, P. V. et al. Reemergence of Bolivian hemorrhagic fever, 2007–2008. Emerg. Infect. Dis. 15, 1526–1528 (2009).
doi: 10.3201/eid1509.090017
Patterson, M., Grant, A. & Paessler, S. Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr. Opin. Virol. 5, 82–90 (2014).
doi: 10.1016/j.coviro.2014.02.007
Johnson, D. M. et al. Bivalent Junin & Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine 38, 2949–2959 (2020).
doi: 10.1016/j.vaccine.2020.02.053
Koma, T. et al. Machupo virus expressing GPC of the Candid#1 vaccine strain of Junin virus is highly attenuated and immunogenic. J. Virol. 90, 1290–1297 (2015).
doi: 10.1128/JVI.02615-15
Coimbra, T. L. M. et al. New arenavirus isolated in Brazil. Lancet 343, 391–392 (1994).
doi: 10.1016/S0140-6736(94)91226-2
Tesh, R. B., Jahrling, P. B., Salas, R. & Shope, R. E. Description of Guanarito virus (Arenaviridae: Arenavirus), the etiologic agent of Venezuelan hemorrhagic fever. Am. J. Trop. Med. Hyg. 50, 452–459 (1994).
doi: 10.4269/ajtmh.1994.50.452
Delgado, S. et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 4, e1000047 (2008).
doi: 10.1371/journal.ppat.1000047
Mills, J. N. et al. A longitudinal study of Junin virus activity in the rodent reservoir of Argentine hemorrhagic fever. Am. J. Trop. Med. Hyg. 47, 749–763 (1992).
doi: 10.4269/ajtmh.1992.47.749
Mills, J. N. et al. Junin virus activity in rodents from endemic and nonendemic loci in central Argentina. Am. J. Trop. Med. Hyg. 44, 589–597 (1991).
doi: 10.4269/ajtmh.1991.44.589
Mercado, R. Rodent control programmes in areas affected by Bolivian haemorrhagic fever. Bull. World Health Organ. 52, 691–696 (1975).
Fulhorst, C. F. et al. Isolation and characterization of Whitewater Arroyo virus, a novel North American arenavirus. Virology 224, 114–120 (1996).
doi: 10.1006/viro.1996.0512
MMWR Fatal Illnesses Associated with a New World Arenavirus—California, 1999–2000 (CDC, 2000).
Briese, T. et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009).
doi: 10.1371/journal.ppat.1000455
Enria, D. A., Briggiler, A. M., Fernandez, N. J., Levis, S. C. & Maiztegui, J. I. Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma. Lancet 2, 255–256 (1984).
doi: 10.1016/S0140-6736(84)90299-X
Kenyon, R. H., Green, D. E., Eddy, G. A. & Peters, C. J. Treatment of Junin virus-infected guinea pigs with immune serum: development of late neurological disease. J. Med. Virol. 20, 207–218 (1986).
doi: 10.1002/jmv.1890200303
Avila, M. M., Samoilovich, S. R., Laguens, R. P., Merani, M. S. & Weissenbacher, M. C. Protection of Junín virus-infected marmosets by passive administration of immune serum: association with late neurologic signs. J. Med. Virol. 21, 67–74 (1987).
doi: 10.1002/jmv.1890210109
Maiztegui, J. I., Fernandez, N. J. & de Damilano, A. J. Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet 2, 1216–1217 (1979).
doi: 10.1016/S0140-6736(79)92335-3
Carnec, X. et al. A vaccine platform against arenaviruses based on a recombinant hyperattenuated mopeia virus expressing heterologous glycoproteins. J. Virol. 92, e02230-17 (2018).
doi: 10.1128/JVI.02230-17
Mateo, M. et al. Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Sci. Transl. Med. 11, eaaw3163 (2019).
doi: 10.1126/scitranslmed.aaw3163
Martínez-Sobrido, L. et al. Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 83, 11330–11340 (2009).
doi: 10.1128/JVI.00763-09
Jiang, X. et al. Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. J. Biol. Chem. 288, 16949–16959 (2013).
doi: 10.1074/jbc.M112.420521
Habjan, M. et al. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 3, e2032 (2008).
doi: 10.1371/journal.pone.0002032
Hastie, K. M., Kimberlin, C. R., Zandonatti, M. A., MacRae, I. J. & Saphire, E. O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc. Natl Acad. Sci. USA 108, 2396–2401 (2011).
doi: 10.1073/pnas.1016404108
Nakaya, H. I. et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 43, 1186–1198 (2015).
doi: 10.1016/j.immuni.2015.11.012
Frank, M. G. et al. South American hemorrhagic fevers: a summary for clinicians. Int. J. Infect. Dis. 105, 505–515 (2021).
doi: 10.1016/j.ijid.2021.02.046
Golden, J. W. et al. An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Sci. Rep. 7, 4679 (2017).
doi: 10.1038/s41598-017-04889-x
Leske, A. et al. Assessing cross-reactivity of Junín virus-directed neutralizing antibodies. Antiviral Res. 163, 106–116 (2019).
doi: 10.1016/j.antiviral.2019.01.006
Silva-Ramos, C. R., Faccini-Martínez, Á. A., Calixto, O.-J. & Hidalgo, M. Bolivian hemorrhagic fever: a narrative review. Travel Med. Infect. Dis. 40, 102001 (2021).
doi: 10.1016/j.tmaid.2021.102001
Escalera-Antezana, J. P. et al. Clinical features of fatal cases of Chapare virus hemorrhagic fever originating from rural La Paz, Bolivia, 2019: a cluster analysis. Travel Med. Infect. Dis. 36, 101589 (2020).
doi: 10.1016/j.tmaid.2020.101589
Rodríguez-Morales, A. J., Bonilla-Aldana, D. K., Risquez, A., Paniz-Mondolfi, A. & Suárez, J. A. Should we be concerned about Venezuelan hemorrhagic fever?—A reflection on its current situation in Venezuela and potential impact in Latin America amid the migration crisis. New Microbes New Infect. 44, 100945 (2021).
doi: 10.1016/j.nmni.2021.100945
Ellwanger, J. H. & Chies, J. A. B. Keeping track of hidden dangers—the short history of the Sabiá virus. Rev. Soc. Bras. Med. Trop. 50, 3–8 (2017).
doi: 10.1590/0037-8682-0330-2016
Medaglini, D., Harandi, A. M., Ottenhoff, T. H. M. & Siegrist, C.-A. Ebola vaccine R&D: filling the knowledge gaps. Sci. Transl. Med. 7, 317ps24 (2015).
doi: 10.1126/scitranslmed.aad3106
Ng, W. M. et al. Contrasting modes of New World arenavirus neutralization by immunization-elicited monoclonal antibodies. mBio 13, e0265021 (2022).
doi: 10.1128/mbio.02650-21
Clark, L. E. et al. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses. Nat. Commun. 9, 1884 (2018).
doi: 10.1038/s41467-018-04271-z
Sommerstein, R. et al. Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog. 11, e1005276 (2015).
doi: 10.1371/journal.ppat.1005276
Bonhomme, C. J. et al. Glycosylation modulates arenavirus glycoprotein expression and function. Virology 409, 223–233 (2011).
doi: 10.1016/j.virol.2010.10.011
Huang, C. et al. Highly pathogenic New World and Old World human arenaviruses induce distinct interferon responses in human cells. J. Virol. 89, 7079–7088 (2015).
doi: 10.1128/JVI.00526-15
Levis, S. C. et al. Correlation between endogenous interferon and the clinical evolution of patients with Argentine hemorrhagic fever. J. Interferon Res. 5, 383–389 (1985).
doi: 10.1089/jir.1985.5.383
Marta, R. F. et al. Proinflammatory cytokines and elastase-alpha-1-antitrypsin in Argentine hemorrhagic fever. Am. J. Trop. Med. Hyg. 60, 85–89 (1999).
doi: 10.4269/ajtmh.1999.60.85
Mateer, E. J., Maruyama, J., Card, G. E., Paessler, S. & Huang, C. Lassa virus, but not highly pathogenic New World arenaviruses, restricts immunostimulatory double-stranded RNA accumulation during infection. J. Virol. 94, e02006-19 (2020).
doi: 10.1128/JVI.02006-19
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
doi: 10.1093/nar/gky379
Amanat, F. et al. Antibodies to the glycoprotein GP2 subunit cross-react between Old and New World arenaviruses. mSphere 3, e00189-18 (2018).
doi: 10.1128/mSphere.00189-18
Cokelaer, T., Desvillechabrol, D., Legendre, R. & Cardon, M. ‘Sequana’: a set of Snakemake NGS pipelines. J. Open Source Softw. 2, 352 (2017).
doi: 10.21105/joss.00352
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
doi: 10.1093/bioinformatics/btt656
Baize, S. The MOPEVAC multivalent vaccine induces sterile protection against New World Arenaviruses non-human primates. Zenodo https://zenodo.org/record/7229439 (2022).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8