PEG-PLGA nanoparticles for encapsulating ciprofloxacin.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 01 2023
06 01 2023
Historique:
received:
04
11
2022
accepted:
03
01
2023
entrez:
7
1
2023
pubmed:
8
1
2023
medline:
11
1
2023
Statut:
epublish
Résumé
Antibiotic medications have been found to hinder the success of regenerative endodontic treatment due to the rapid degradation of the drug, and the acidic nature of ciprofloxacin (CIP) can be harmful to stem cells of the apical papilla (SCAPs), the cells responsible for regeneration. In this study, a nanocarrier system was used for controlled drug release for longer drug activity and less cytotoxicity to the cells. CIP was loaded in poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PEG-PLGA) nanoparticles (NPs) with an ion-pairing agent. The NPs demonstrated a monodispersed spherical morphology with a mean diameter of 120.7 ± 0.43 nm. The encapsulation efficiency of the CIP-loaded PEG-PLGA NPs was 63.26 ± 9.24%, and the loading content was 7.75 ± 1.13%. Sustained CIP release was achieved over 168 h and confirmed with theoretical kinetic models. Enhanced NP bactericidal activity was observed against Enterococcus faecalis. Additionally, CIP-loaded PEG-PLGA NPs had a low cytotoxic effect on SCAPs. These results suggest the use of a nanocarrier system to prolong the antibiotic activity, provide a sterile environment, and prevent reinfection by the bacteria remaining in the root canal during regenerative endodontic treatment.
Identifiants
pubmed: 36609594
doi: 10.1038/s41598-023-27500-y
pii: 10.1038/s41598-023-27500-y
pmc: PMC9822989
doi:
Substances chimiques
polyethylene glycol-poly(lactide-co-glycolide)
0
Ciprofloxacin
5E8K9I0O4U
Polyesters
0
Polyethylene Glycols
3WJQ0SDW1A
Anti-Bacterial Agents
0
Drug Carriers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
266Informations de copyright
© 2023. The Author(s).
Références
Kandaswamy, D. & Venkateshbabu, N. Root canal irrigants. J. Conserv. Dent. 13, 256–264. https://doi.org/10.4103/0972-0707.73378 (2010).
doi: 10.4103/0972-0707.73378
Şenel, S., Özdoğan, A. I. & Akca, G. Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv. Transl. Res. 11, 1703–1734. https://doi.org/10.1007/s13346-021-00961-2 (2021).
doi: 10.1007/s13346-021-00961-2
Araujo, P. R. S. et al. Pulp Revascularization: A literature review. Open Dent. J. 10, 48–56. https://doi.org/10.2174/1874210601711010048 (2017).
doi: 10.2174/1874210601711010048
Ruparel, N. B., Teixeira, F. B., Ferraz, C. C. R. & Diogenes, A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J. Endod. 38, 1372–1375. https://doi.org/10.1016/j.joen.2012.06.018 (2012).
doi: 10.1016/j.joen.2012.06.018
Chotitumnavee, J. et al. In vitro evaluation of local antibiotic delivery via fibrin hydrogel. J. Dental Sci. 14, 7–14. https://doi.org/10.1016/j.jds.2018.08.010 (2019).
doi: 10.1016/j.jds.2018.08.010
Hanna, D. H. & Saad, G. R. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg. Chem. 84, 115–124. https://doi.org/10.1016/j.bioorg.2018.11.036 (2019).
doi: 10.1016/j.bioorg.2018.11.036
Jain, V. et al. Ciprofloxacin surf-plexes in sub-micron emulsions: A novel approach to improve payload efficiency and antimicrobial efficacy. Int. J. Pharm. 409, 237–244. https://doi.org/10.1016/j.ijpharm.2011.02.020 (2011).
doi: 10.1016/j.ijpharm.2011.02.020
Charoo, N., Kohli, K., Ali, A. & Anwer, A. Ophthalmic delivery of ciprofloxacin hydrochloride from different polymer formulations. In vitro and in vivo studies. Drug Dev. Ind. Pharm. 29, 215–221. https://doi.org/10.1081/DDC-120016729 (2003).
doi: 10.1081/DDC-120016729
Ke, T.-L., Cagle, G., Schlech, B., Lorenzetti, O. J. & Mattern, J. Ocular bioavailability of ciprofloxacin in sustained release formulations. J. Ocul. Pharmacol. Ther. 17, 555–563. https://doi.org/10.1089/10807680152729248 (2001).
doi: 10.1089/10807680152729248
Nagarajan, S., Bechelany, M., Kalkura, N., Miele, P., Bohatier, C., & Balme, S. Electrospun Nanofibers for Drug Delivery in Regenerative Medicine. In Applications of Targeted Nano Drugs and Delivery Systems 595–625 (Elsevier, 2019).
Yeh, Y. C., Huang, T. H., Yang, S. C., Chen, C. C. & Fang, J. Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front. Chem. 8, 286. https://doi.org/10.3389/fchem.2020.00286 (2020).
doi: 10.3389/fchem.2020.00286
Walvekar, P., Gannimani, R. & Govender, T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 127, 121–141. https://doi.org/10.1016/j.ejps.2018.10.017 (2019).
doi: 10.1016/j.ejps.2018.10.017
Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine 12, 1227–1249. https://doi.org/10.2147/ijn.S121956 (2017).
doi: 10.2147/ijn.S121956
Stebbins, N. D., Ouimet, M. A. & Uhrich, K. E. Antibiotic-containing polymers for localized, sustained drug delivery. Adv. Drug Deliv. Rev. 78, 77–87. https://doi.org/10.1016/j.addr.2014.04.006 (2014).
doi: 10.1016/j.addr.2014.04.006
Lam, S. J., Wong, E. H. H., Boyer, C. & Qiao, G. G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci. 76, 40–64. https://doi.org/10.1016/j.progpolymsci.2017.07.007 (2018).
doi: 10.1016/j.progpolymsci.2017.07.007
Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985. https://doi.org/10.1039/C2CS35115C (2012).
doi: 10.1039/C2CS35115C
Zhang, K. et al. PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications. J. Control. Release 183, 77–86. https://doi.org/10.1016/j.jconrel.2014.03.026 (2014).
doi: 10.1016/j.jconrel.2014.03.026
Govender, T., Stolnik, S., Garnett, M. C., Illum, L. & Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release 57, 171–185. https://doi.org/10.1016/S0168-3659(98)00116-3 (1999).
doi: 10.1016/S0168-3659(98)00116-3
Page-Clisson, M. E., Pinto-Alphandary, H., Ourevitch, M., Andremont, A. & Couvreur, P. Development of ciprofloxacin-loaded nanoparticles: Physicochemical study of the drug carrier. J. Control. Release 56, 23–32. https://doi.org/10.1016/S0168-3659(98)00065-0 (1998).
doi: 10.1016/S0168-3659(98)00065-0
Günday, C. et al. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv. Transl. Res. 10, 706–720. https://doi.org/10.1007/s13346-020-00736-1 (2020).
doi: 10.1007/s13346-020-00736-1
Farhangi, M., Kobarfard, F., Mahboubi, A., Vatanara, A. & Mortazavi, S. A. Preparation of an optimized ciprofloxacin-loaded chitosan nanomicelle with enhanced antibacterial activity. Drug Dev. Ind. Pharm. 44, 1273–1284. https://doi.org/10.1080/03639045.2018.1442847 (2018).
doi: 10.1080/03639045.2018.1442847
Kashi, T. S. J. et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int. J. Nanomedicine 7, 221–234. https://doi.org/10.2147/IJN.S27709 (2012).
doi: 10.2147/IJN.S27709
Dalwadi, G. & Sunderland, B. An ion pairing approach to increase the loading of hydrophilic and lipophilic drugs into PEGylated PLGA nanoparticles. Eur. J. Pharm. Biopharm. 71, 231–242. https://doi.org/10.1016/j.ejpb.2008.08.004 (2009).
doi: 10.1016/j.ejpb.2008.08.004
Rojas, B. et al. Antibacterial Activity of Copper Nanoparticles (CuNPs) against a Resistant Calcium Hydroxide Multispecies Endodontic Biofilm. Nanomaterials 11, 2254 (2021).
doi: 10.3390/nano11092254
Ibrahim, A. et al. Antimicrobial and cytotoxic activity of electrosprayed chitosan nanoparticles against endodontic pathogens and Balb/c 3T3 fibroblast cells. Sci. Rep. 11, 24487. https://doi.org/10.1038/s41598-021-04322-4 (2021).
doi: 10.1038/s41598-021-04322-4
Arafa, M. G., Mousa, H. A. & Afifi, N. N. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Deliv. 27, 26–39. https://doi.org/10.1080/10717544.2019.1701140 (2020).
doi: 10.1080/10717544.2019.1701140
Jeong, Y.-I. et al. Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int. J. Pharm. 352, 317–323. https://doi.org/10.1016/j.ijpharm.2007.11.001 (2008).
doi: 10.1016/j.ijpharm.2007.11.001
Songsaad, A., Gonmanee, T., Ruangsawasdi, N., Phruksaniyom, C. & Thonabulsombat, C. Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla. Stem Cell Res. Ther. 11, 542. https://doi.org/10.1186/s13287-020-02069-9 (2020).
doi: 10.1186/s13287-020-02069-9
Baishya, H. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs 06, 1–8. https://doi.org/10.4172/2329-6631.1000171 (2017).
doi: 10.4172/2329-6631.1000171
Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145–1149. https://doi.org/10.1002/jps.2600521210 (1963).
doi: 10.1002/jps.2600521210
Peppas, N. A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60, 110–111 (1985).
Hixson, A. W. & Crowell, J. H. Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. 23, 923–931. https://doi.org/10.1021/ie50260a018 (1931).
doi: 10.1021/ie50260a018
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 (1983).
doi: 10.1016/0022-1759(83)90303-4
Lowry, G. V. et al. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ. Sci. Nano 3, 953–965. https://doi.org/10.1039/C6EN00136J (2016).
doi: 10.1039/C6EN00136J
Pulingam, T., Foroozandeh, P., Chuah, J. A. & Sudesh, K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials (Basel) 12, 576. https://doi.org/10.3390/nano12030576 (2022).
doi: 10.3390/nano12030576
Ristroph, K. D. & Prud’homme, R. K. Hydrophobic ion pairing: Encapsulating small molecules, peptides, and proteins into nanocarriers. Nanoscale Adv. 1, 4207–4237. https://doi.org/10.1039/C9NA00308H (2019).
doi: 10.1039/C9NA00308H
Langer, R. & Peppas, N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: A review. J. Macromol. Sci. Part C 23, 61–126. https://doi.org/10.1080/07366578308079439 (1983).
doi: 10.1080/07366578308079439
Bruschi, M. L. Strategies to Modify the Drug Release from Pharmaceutical Systems 63–86 (Woodhead Publishing, 2015).
Weng, J., Tong, H. H. Y. & Chow, S. F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 12, 732. https://doi.org/10.3390/pharmaceutics12080732 (2020).
doi: 10.3390/pharmaceutics12080732
Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P. V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659. https://doi.org/10.3390/ijms15033640 (2014).
doi: 10.3390/ijms15033640
Siepmann, J. & Peppas, N. A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 418, 6–12. https://doi.org/10.1016/j.ijpharm.2011.03.051 (2011).
doi: 10.1016/j.ijpharm.2011.03.051
Siepmann, J. & Peppas, N. A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48, 139–157. https://doi.org/10.1016/S0169-409X(01)00112-0 (2001).
doi: 10.1016/S0169-409X(01)00112-0
Martínez-Martínez, L., Joyanes, P., Pascual, A., Terrero, E. & Perea, E. J. Activity of eight fluoroquinolones against enterococci. Clin. Microbiol. Infect. 3, 497–499. https://doi.org/10.1111/j.1469-0691.1997.tb00290.x (1997).
doi: 10.1111/j.1469-0691.1997.tb00290.x
Genaro, A., Cunha, M. L. R. S. & Lopes, C. A. M. Study on the susceptibility of Enterococcus faecalis from infectious processes to ciprofloxacin and vancomycin. J. Venom. Anim. Toxins Incl. Trop. Dis. 11, 252–260. https://doi.org/10.1590/S1678-91992005000300004 (2005).
doi: 10.1590/S1678-91992005000300004
Pignatello, R. et al. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials (Basel) 8, 304. https://doi.org/10.3390/nano8050304 (2018).
doi: 10.3390/nano8050304
Sobhani, Z., Mohammadi Samani, S., Montaseri, H. & Khezri, E. Nanoparticles of chitosan loaded ciprofloxacin: Fabrication and antimicrobial activity. Adv. Pharm. Bull. 7, 427–432. https://doi.org/10.15171/apb.2017.051 (2017).
doi: 10.15171/apb.2017.051
Soliman, N. M. et al. Development and optimization of ciprofloxacin HCl-loaded chitosan nanoparticles using box–behnken experimental design. Molecules 27, 4468 (2022).
doi: 10.3390/molecules27144468
Huh, A. J. & Kwon, Y. J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156, 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002 (2011).
doi: 10.1016/j.jconrel.2011.07.002
Sun, J. et al. Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur. J. Pharm. Biopharm. 54, 51–58. https://doi.org/10.1016/S0939-6411(02)00018-8 (2002).
doi: 10.1016/S0939-6411(02)00018-8
Fonte, P., Reis, S. & Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release 225, 75–86. https://doi.org/10.1016/j.jconrel.2016.01.034 (2016).
doi: 10.1016/j.jconrel.2016.01.034
Tang, X. et al. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif. 54, e13112. https://doi.org/10.1111/cpr.13112 (2021).
doi: 10.1111/cpr.13112
Lareu, R. R. et al. Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: The biological relevance of the excluded volume effect. FEBS Lett. 581, 2709–2714. https://doi.org/10.1016/j.febslet.2007.05.020 (2007).
doi: 10.1016/j.febslet.2007.05.020
Assunção, M. et al. Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect. Mater. Sci. Eng. C 106, 110280. https://doi.org/10.1016/j.msec.2019.110280 (2020).
doi: 10.1016/j.msec.2019.110280
Mochizuki, M., Sagara, H. & Nakahara, T. Type I collagen facilitates safe and reliable expansion of human dental pulp stem cells in xenogeneic serum-free culture. Stem Cell Res. Ther. 11, 267. https://doi.org/10.1186/s13287-020-01776-7 (2020).
doi: 10.1186/s13287-020-01776-7
Wan, H.-Y. et al. Dextran sulfate-amplified extracellular matrix deposition promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 140, 163–177. https://doi.org/10.1016/j.actbio.2021.11.049 (2022).
doi: 10.1016/j.actbio.2021.11.049
Lee, C. K. et al. Anti-PD-L1 F(ab) conjugated PEG–PLGA nanoparticle enhances immune checkpoint therapy. Nanotheranostics 6, 243–255. https://doi.org/10.7150/ntno.65544 (2022).
doi: 10.7150/ntno.65544
Moraes Moreira Carraro, T. C., Altmeyer, C., Maissar Khalil, N. & Mara Mainardes, R. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J. Mycol. Méd. 27, 519–529. https://doi.org/10.1016/j.mycmed.2017.07.004 (2017).
doi: 10.1016/j.mycmed.2017.07.004
Liang, Q. et al. Development of rifapentine-loaded PLGA-based nanoparticles: In vitro characterisation and in vivo study in mice. Int. J. Nanomed. 15, 7491–7507. https://doi.org/10.2147/IJN.S257758 (2020).
doi: 10.2147/IJN.S257758