Inflammatory Responses Induced by the Monophasic Variant of Salmonella Typhimurium in Pigs Play a Role in the High Shedder Phenotype and Fecal Microbiota Composition.
Salmonella
gut microbiota
high shedder
immunity
inflammation
pig
Journal
mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636
Informations de publication
Date de publication:
23 02 2023
23 02 2023
Historique:
pubmed:
12
1
2023
medline:
3
3
2023
entrez:
11
1
2023
Statut:
ppublish
Résumé
Pigs infected with Salmonella may excrete large amounts of Salmonella, increasing the risk of spread of this pathogen in the food chain. Identifying Salmonella high shedder pigs is therefore required to mitigate this risk. We analyzed immune-associated markers and composition of the gut microbiota in specific-pathogen-free pigs presenting different shedding levels after an oral infection with Salmonella. Immune response was studied through total blood cell counts, production of anti-Salmonella antibodies and cytokines, and gene expression quantification. Total Salmonella shedding for each pig was estimated and hierarchical clustering was used to cluster pigs into high, intermediate, and low shedders. Gut microbiota compositions were assessed using 16S rRNA microbial community profiling. Comparisons were made between control and inoculated pigs, then between high and low shedders pigs. Prior to infection, high shedders had similar immunological profiles compared to low shedders. As soon as 1 day postinoculation (dpi), significant differences on the cytokine production level and on the expression level of several host genes related to a proinflammatory response were observed between high and low shedders. Infection with Salmonella induced an early and profound remodeling of the immune response in all pigs, but the intensity of the response was stronger in high shedders. In contrast, low shedders seroconverted earlier than high shedders. Just after induction of the proinflammatory response (at 2 dpi), some taxa of the fecal microbiota were specific to the shedding phenotypes. This was related to the enrichment of several functional pathways related to anaerobic respiration in high shedders. In conclusion, our data show that the immune response to Salmonella modifies the fecal microbiota and subsequently could be responsible for shedding phenotypes. Influencing the gut microbiota and reducing intestinal inflammation could be a strategy for preventing Salmonella high shedding in livestock.
Identifiants
pubmed: 36629432
doi: 10.1128/msystems.00852-22
pmc: PMC9948705
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0085222Commentaires et corrections
Type : CommentIn
Références
J Immunol. 2000 Aug 1;165(3):1486-90
pubmed: 10903754
Front Cell Infect Microbiol. 2016 Jan 22;5:106
pubmed: 26835435
PeerJ. 2014 Sep 25;2:e593
pubmed: 25276506
Vet Res. 2005 Jul-Aug;36(4):645-56
pubmed: 15955287
Animals (Basel). 2020 Apr 13;10(4):
pubmed: 32294951
EFSA J. 2019 Dec 11;17(12):e05926
pubmed: 32626211
PLoS One. 2011;6(12):e28768
pubmed: 22174891
Foods. 2021 Jun 18;10(6):
pubmed: 34207083
Semin Immunol. 2014 Dec;26(6):518-32
pubmed: 25458989
Gut Microbes. 2011 Jan-Feb;2(1):58-60
pubmed: 21637020
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Microbiology (Reading). 2005 Dec;151(Pt 12):3969-3977
pubmed: 16339941
Foodborne Pathog Dis. 2020 Feb;17(2):87-97
pubmed: 31532231
Nucleic Acids Res. 2000 Sep 15;28(18):3442-4
pubmed: 10982861
Adv Exp Med Biol. 2016;874:167-82
pubmed: 26589218
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Vet Microbiol. 2009 Mar 30;135(3-4):384-8
pubmed: 18996651
Cell Host Microbe. 2019 Jan 9;25(1):128-139.e5
pubmed: 30629913
Anim Genet. 2011 Oct;42(5):521-34
pubmed: 21906103
Microbiome. 2015 Oct 05;3:48
pubmed: 26437933
Comp Immunol Microbiol Infect Dis. 2013 Mar;36(2):149-60
pubmed: 23274115
Vet Res. 2018 Dec 12;49(1):121
pubmed: 30541630
Genome Biol. 2014;15(12):550
pubmed: 25516281
Eur J Nutr. 2018 Feb;57(1):1-24
pubmed: 28393285
Nature. 2010 Sep 23;467(7314):426-9
pubmed: 20864996
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15780-5
pubmed: 25331868
Appl Environ Microbiol. 2006 Jul;72(7):5069-72
pubmed: 16820507
Nucleic Acids Res. 2018 Jan 4;46(D1):D633-D639
pubmed: 29059334
Epidemiol Infect. 2017 Jun;145(8):1513-1526
pubmed: 28241896
Vet Res. 2009 Jan-Feb;40(1):5
pubmed: 18922229
Sci Rep. 2018 May 17;8(1):7788
pubmed: 29773876
Nat Biotechnol. 2020 Jun;38(6):685-688
pubmed: 32483366
Infect Genet Evol. 2013 Jun;16:330-40
pubmed: 23535116
Microb Biotechnol. 2020 Sep;13(5):1611-1630
pubmed: 32639676
Infect Immun. 2008 Jun;76(6):2531-40
pubmed: 18347038
J Proteomics. 2012 Apr 3;75(7):2015-26
pubmed: 22285631
Front Microbiol. 2017 Aug 15;8:1570
pubmed: 28861074
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Foodborne Pathog Dis. 2018 Sep;15(9):576-582
pubmed: 30010414
Environ Microbiol. 2018 Sep;20(9):3246-3260
pubmed: 29921019
mSystems. 2019 Apr 23;4(2):
pubmed: 31020042
Annu Rev Microbiol. 2015;69:31-48
pubmed: 26002180
Dev Comp Immunol. 2013 Sep;41(1):100-4
pubmed: 23644015
Porcine Health Manag. 2021 Apr 26;7(1):34
pubmed: 33902758
Nature. 2006 Aug 10;442(7103):651-6
pubmed: 16862125
Cell. 2010 Mar 19;140(6):871-82
pubmed: 20303877
Vet Rec Open. 2019 Oct 05;6(1):e000287
pubmed: 31673373
PLoS One. 2012;7(4):e34660
pubmed: 22523553
PeerJ. 2016 Oct 18;4:e2584
pubmed: 27781170
Annu Rev Anim Biosci. 2017 Feb 8;5:43-63
pubmed: 27860494
Gigascience. 2016 Jun 13;5:27
pubmed: 27296526
Am J Physiol Lung Cell Mol Physiol. 2007 Dec;293(6):L1377-84
pubmed: 17905855
Nat Commun. 2015 Dec 01;6:10062
pubmed: 26620920
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Infect Immun. 2015 Sep;83(9):3470-8
pubmed: 26099579
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Infect Immun. 2008 Jan;76(1):403-16
pubmed: 17967858
PLoS Pathog. 2017 Jan 5;13(1):e1006129
pubmed: 28056091
mBio. 2012 Jun 12;3(3):
pubmed: 22691391
Bioinformatics. 2018 Apr 15;34(8):1287-1294
pubmed: 29228191
Clin Infect Dis. 2018 Mar 5;66(6):877-885
pubmed: 29069323
Nat Biotechnol. 2019 Sep;37(9):1091
pubmed: 31399723
Mol Med Rep. 2018 Apr;17(4):4867-4873
pubmed: 29393500
BMC Genomics. 2014 Jun 09;15:452
pubmed: 24912583
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Mol Immunol. 2007 Apr;44(11):2900-14
pubmed: 17337057
Nat Biotechnol. 2019 Aug;37(8):852-857
pubmed: 31341288
Innate Immun. 2015 Apr;21(3):227-41
pubmed: 24632525
Am J Vet Res. 2001 Aug;62(8):1194-7
pubmed: 11497437
PLoS One. 2015 Feb 17;10(2):e0117441
pubmed: 25688558