The c-di-AMP-binding protein CbpB modulates the level of ppGpp alarmone in Streptococcus agalactiae.
Streptococcus
CBS domain
X-ray crystallography & binding
cyclic diadenosine monophosphate
potassium homeostasis
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
07
12
2022
received:
17
08
2022
accepted:
09
01
2023
medline:
8
6
2023
pubmed:
12
1
2023
entrez:
11
1
2023
Statut:
ppublish
Résumé
Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.
Substances chimiques
Carrier Proteins
0
cyclic diadenosine phosphate
0
Guanosine Pentaphosphate
38918-96-6
Guanosine Tetraphosphate
33503-72-9
Bacterial Proteins
0
Cyclic AMP
E0399OZS9N
Dinucleoside Phosphates
0
Potassium
RWP5GA015D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2968-2992Informations de copyright
© 2023 Federation of European Biochemical Societies.
Références
Witte G, Hartung S, Büttner K & Hopfner K-P (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30, 167-178.
Corrigan RM, Abbott JC, Burhenne H, Kaever V & Gründling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7, e1002217.
Luo Y & Helmann JD (2012) Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83, 623-639.
Witte CE, Whiteley AT, Burke TP, Sauer J-D, Portnoy DA & Woodward JJ (2013) Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4, e00282-13.
Mehne FMP, Gunka K, Eilers H, Herzberg C, Kaever V & Stülke J (2013) Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J Biol Chem 288, 2004-2017.
Corrigan RM & Gründling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11, 513-524.
Fahmi T, Port GC & Cho KH (2017) c-di-AMP: an essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria. Genes (Basel) 8, 197.
Devaux L, Sleiman D, Mazzuoli M-V, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski P-A & Firon A (2018) Cyclic di-AMP regulation of osmotic homeostasis is essential in group B Streptococcus. PLoS Genet 14, e1007342.
Commichau FM, Gibhardt J, Halbedel S, Gundlach J & Stülke J (2018) A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26, 175-185.
He J, Yin W, Galperin MY & Chou S-H (2020) Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 48, 2807-2829.
Stülke J & Krüger L (2020) Cyclic di-AMP signaling in bacteria. Annu Rev Microbiol 74, 159-179.
Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT & Gründling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci USA 110, 9084-9089.
Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW & Bai G (2014) Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J Bacteriol 196, 614-623.
Kim H, Youn S-J, Kim SO, Ko J, Lee J-O & Choi B-S (2015) Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J Biol Chem 290, 16393-16402.
Quintana IM, Gibhardt J, Turdiev A, Hammer E, Commichau FM, Lee VT, Magni C & Stülke J (2019) The KupA and KupB proteins of Lactococcus lactis IL1403 are novel c-di-AMP receptor proteins responsible for potassium uptake. J Bacteriol 210, e00028-19.
Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K & Gründling A (2016) Binding of cyclic Di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter. J Bacteriol 198, 98-110.
Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT & Commichau FM (2019) c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. J Biol Chem 294, 16020-16033.
Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiß M, Gibhardt J, Thürmer A, Hertel D, Daniel R et al. (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10, eaal3011.
Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V et al. (2015) Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 290, 3069-3080.
Choi PH, Sureka K, Woodward JJ & Tong L (2015) Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein. Microbiology 4, 361-374.
Müller M, Hopfner K-P & Witte G (2015) c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589, 45-51.
Edmond KM, Kortsalioudaki C, Scott S, Schrag SJ, Zaidi AKM, Cousens S & Heath PT (2012) Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet 379, 547-556.
Huynh TN, Choi PH, Sureka K, Ledvina HE, Campillo J, Tong L & Woodward JJ (2016) Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC. Mol Microbiol 102, 233-243.
Schuster CF, Bellows LE, Tosi T, Campeotto I, Corrigan RM, Freemont P & Gründling A (2016) The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus. Sci Signal 9, ra81.
Baykov AA, Tuominen HK & Lahti R (2011) The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem Biol 6, 1156-1163.
Ereño-Orbea J, Oyenarte I & Martínez-Cruz LA (2013) CBS domains: ligand binding sites and conformational variability. Arch Biochem Biophys 540, 70-81.
Buey RM, Ledesma-Amaro R, Velázquez-Campoy A, Balsera M, Chagoyen M, de Pereda JM & Revuelta JL (2015) Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 6, 8923.
Labesse G, Alexandre T, Vaupré L, Salard-Arnaud I, Him JLK, Raynal B, Bron P & Munier-Lehmann H (2013) MgATP regulates allostery and fiber formation in IMPDHs. Structure 21, 975-985.
Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT et al. (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496-500.
Hattori M, Tanaka Y, Fukai S, Ishitani R & Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072-1075.
Jämsen J, Tuominen H, Salminen A, Belogurov GA, Magretova NN, Baykov AA & Lahti R (2007) A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides. Biochem J 408, 327-333.
Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT et al. (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158, 1389-1401.
Krüger L, Herzberg C, Wicke D, Bähre H, Heidemann JL, Dickmanns A, Schmitt K, Ficner R & Stülke J (2021) A meet-up of two second messengers: the c-di-AMP receptor DarB controls (p)ppGpp synthesis in Bacillus subtilis. Nat Commun 12, 1210.
Chipman DM & Shaanan B (2001) The ACT domain family. Curr Opin Struct Biol 11, 694-700.
Grant GA (2006) The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 281, 33825-33829.
Roelofs KG, Wang J, Sintim HO & Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci USA 108, 15528-15533.
Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22, 12-13.
Peterson BN, Young MKM, Luo S, Wang J, Whiteley AT, Woodward JJ, Tong L, Wang JD & Portnoy DA (2020) (p)ppGpp and c-di-AMP homeostasis is controlled by CbpB in Listeria monocytogenes. mBio 11, e01625-20.
Heidemann JL, Neumann P, Krüger L, Wicke D, Vinhoven L, Linden A, Dickmanns A, Stülke J, Urlaub H & Ficner R (2022) Structural basis for c-di-AMP-dependent regulation of the bacterial stringent response by receptor protein DarB. J Biol Chem 298, 102144.
Selim KA, Haffner M, Burkhardt M, Mantovani O, Neumann N, Albrecht R, Seifert R, Krüger L, Stülke J, Hartmann MD et al. (2021) Diurnal metabolic control in cyanobacteria requires perception of second messenger signaling molecule c-di-AMP by the carbon control protein SbtB. Sci Adv 7, eabk0568.
Gundlach J, Commichau FM & Stülke J (2018) Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Curr Genet 64, 191-195.
Holtmann G, Bakker EP, Uozumi N & Bremer E (2003) KtrAB and KtrCD: two K + uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185, 1289-1298.
Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J & Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527, 59-63.
Gundlach J, Krüger L, Herzberg C, Turdiev A, Poehlein A, Tascón I, Weiss M, Hertel D, Daniel R, Hänelt I et al. (2019) Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J Biol Chem 294, 9605-9614.
Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ & Krulwich TA (2013) Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K + uptake systems. mBio 4, e00407-13.
Blötz C, Treffon K, Kaever V, Schwede F, Hammer E & Stülke J (2017) Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae. Front Microbiol 8, 1328.
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX & Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9, 834-839.
Gundlach J, Herzberg C, Hertel D, Thürmer A, Daniel R, Link H & Stülke J (2017) Adaptation of Bacillus subtilis to life at extreme potassium limitation. mBio 8, e00861-17.
Vieira-Pires RS, Szollosi A & Morais-Cabral JH (2013) The structure of the KtrAB potassium transporter. Nature 496, 323-328.
Szollosi A, Vieira-Pires RS, Teixeira-Duarte CM, Rocha R & Morais-Cabral JH (2016) Dissecting the molecular mechanism of nucleotide-dependent activation of the KtrAB K+ transporter. PLoS Biol 14, e1002356.
Albright RA, Ibar J-LV, Kim CU, Gruner SM & Morais-Cabral JH (2006) The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring. Cell 126, 1147-1159.
Irving SE, Choudhury NR & Corrigan RM (2021) The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 19, 256-271.
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP & Wang JD (2012) Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48, 231-241.
Gaca AO, Kajfasz JK, Miller JH, Liu K, Wang JD, Abranches J & Lemos JA (2013) Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 4, e00646-13.
Krüger L, Herzberg C, Wicke D, Scholz P, Schmitt K, Turdiev A, Lee VT, Ischebeck T & Stülke J (2022) Sustained control of pyruvate carboxylase by the essential second messenger cyclic di-AMP in Bacillus subtilis. mBio 13, e03602-21.
Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS & Tong L (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci USA 114, E7226-E7235.
Weber P, Pissis C, Navaza R, Mechaly AE, Saul F, Alzari PM & Haouz A (2019) High-throughput crystallization pipeline at the crystallography core facility of the Institut Pasteur. Molecules 24, 4451.
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ et al. (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D 75, 861-877.
Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40, 658-674.
De Lano WL (2002) PyMOL: An Open-Source Molecular Graphics Tool.
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ & Svergun DI (2003) PRIMUS: a windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36, 1277-1282.
Hopkins JB, Gillilan RE & Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Cryst 50, 1545-1553.