Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels.


Journal

The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397

Informations de publication

Date de publication:
03 2023
Historique:
revised: 30 12 2022
received: 20 10 2022
accepted: 05 01 2023
pubmed: 13 1 2023
medline: 21 3 2023
entrez: 12 1 2023
Statut: ppublish

Résumé

Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca

Identifiants

pubmed: 36633062
doi: 10.1111/tpj.16106
doi:

Substances chimiques

Cyclic Nucleotide-Gated Cation Channels 0
Arabidopsis Proteins 0
Calcium SY7Q814VUP
CNGC6 protein, Arabidopsis 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1223-1236

Informations de copyright

© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.

Références

Abdel-Hamid, H., Chin, K., Moeder, W., Shahinas, D., Gupta, D. & Yoshioka, K. (2013) A suppressor screen of the chimeric AtCNGC11/12 reveals residues important for intersubunit interactions of cyclic nucleotide-gated ion channels. Plant Physiology, 162, 1681-1693.
Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S. et al. (2007) Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell, 19, 1081-1095.
Ali, R., Zielinski, R.E. & Berkowitz, G. (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. Journal of Experimental Botany, 57, 125-138.
Aslam, S.N., Newman, M., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T. et al. (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Current Biology, 18, 1078-1083.
Balagué, C., Lin, B., Alcon, C., Flottes, G., Malmström, S., Köhler, C. et al. (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 15, 365-379.
Biel, M. (2009) Cyclic nucleotide-regulated cation channels. The Journal of Biological Chemistry, 284, 9017-9021.
Biel, M. & Michalakis, S. (2009) Cyclic Nucleotide-Gated Channels. In: cGMP: Generators, Effectors and Therapeutic Implications. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 111-136.
Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P. et al. (2010) Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature, 464, 418-422.
Chan, C.W.M., Schorrak, L.M., Smith, R.K., Bent, A.F. & Sussman, M.R. (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiology, 132, 728-731.
Charpentier, M., Sun, J., Martins, T.V., Radhakrishnan, G.V., Findlay, K., Soumpourou, E. et al. (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science, 352, 1102-1105.
Chen, D., Cao, Y., Li, H., Kim, D., Ahsan, N., Thelen, J. et al. (2017) Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nature Communications, 8, 1-13.
Chin, K., DeFalco, T., Moeder, W. & Yoshioka, K. (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiology, 163, 611-624.
Chou, H., Zhu, Y., Ma, Y. & Berkowitz, G.A. (2016) The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca 2+ as a secondary cytosolic messenger. Plant Journal, 85, 494-506.
Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K. & Bent, A.F. (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America, 97, 9323-9328.
Dietrich, P., Anschütz, U., Kugler, A. & Becker, D. (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biology, 12, 80-93.
Duong, H.N., Cho, S., Wang, L., Pham, A.Q., Davies, J.M. & Stacey, G. (2022) Cyclic nucleotide-gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. The Plant Journal, 109, 1386-1396.
Ferrando, A., Kron, S.J., Rios, G., Fink, G.R. & Serrano, R. (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15, 5470-5481.
Finka, A., Cuendet, A.F.H., Maathuis, F.J.M., Saidi, Y. & Goloubinoff, P. (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 24, 3333-3348.
Fortuna, A., Lee, J., Ung, H., Chin, K., Moeder, W. & Yoshioka, K. (2015) Crossroads of stress responses, development and flowering regulation- the multiple roles of cyclic nucleotide gated Ion Channel 2. Plant Signaling & Behavior, 10, e989758.
Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D. et al. (2012) A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. Plant Journal, 70, 1056-1069.
Gao, J., Wang, N. & Wang, G.-X. (2013) Saccharomyces cerevisiae-induced stomatal closure mainly mediated by salicylhydroxamic acid-sensitive peroxidases in Vicia faba. Plant Physiology and Biochemistry, 65, 27-31.
Gao, Q.-F., Gu, L.-L., Wang, H.-Q., Fei, C.-F., Fang, X., Hussain, J. et al. (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proceedings of the National Academy of Sciences, 113, 3096-3101.
Govrin, E.M. & Levine, A. (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751-757.
Hossain, M.A., Ye, W., Munemasa, S., Nakamura, Y., Mori, I.C. & Murata, Y. (2014) Cyclic adenosine 5′-diphosphoribose (cADPR) cyclic guanosine 3′,5′-monophosphate positively function in Ca2+ elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cel G. Noctor, ed. Plant Biology, 16, 1140-1144.
Hua, B., Mercier, R.W., Zielinski, R.E. & Berkowitz, G.A. (2003) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 41, 945-954.
Huffaker, A., Pearce, G. & Ryan, C.A. (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 103, 10098-10103.
Jeworutzki, E., Roelfsema, M.R.G., Anschütz, U., Krol, E., Elzenga, J.T.M., Felix, G. et al. (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant Journal, 62, 367-378.
Jurkowski, G.I., Smith, R.K., Yu, I., Ham, J.H., Sharma, S.B., Klessig, D.F. et al. (2004) Arabidopsis DND2 , a second cyclic nucleotide-gated Ion Channel gene for which mutation causes the “ defense, No death ” phenotype. Molecular Plant-Microbe Interactions, 17, 511-520.
Köhler, C., Merkle, T., Roby, R. & Neuhaus, G. (2001) Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta, 213, 327-332.
Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B. et al. (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry, 285, 13471-13479.
Kwaaitaal, M., Huisman, R., Maintz, J., Reinstädler, A. & Panstruga, R. (2011) Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. The Biochemical Journal, 440, 355-365.
Ladwig, F., Dahlke, R.I., Stührwohldt, N., Hartmann, J., Harter, K. & Sauter, M. (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell, 27, 1718-1729.
Leng, Q., Mercier, R.W., Hua, B.-G., Fromm, H. & Berkowitz, G.A. (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiology, 128, 400-410.
Leng, Q., Mercier, R.W., Yao, W. & Berkowitz, G.A. (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiology, 121, 753-761.
Li, J., Jia, H. & Wang, J. (2014) cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Reports, 33, 447-459.
Lu, M., Zhang, Y., Tang, S., Pan, J., Yu, Y., Han, J. et al. (2016) AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. Journal of Experimental Botany, 67, 809-819.
Ma, W. & Berkowitz, G.A. (2011) Cyclic Nucleotide Gated Channels (CNGCs) and the Generation of Ca2+ Signals. In: Luan, S. (Ed.) Coding and Decoding of Calcium Signals in Plants. Signaling and Communication in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 93-110.
Ma, W., Qi, Z., Smigel, A., Walker, R.K., Verma, R. & Berkowitz, G.A. (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proceedings of the National Academy of Sciences of the United States of America, 106, 20995-21000.
Ma, W., Smigel, A., Walker, R.K., Moeder, W., Yoshioka, K. & Berkowitz, G. (2010) Leaf senescence signaling: the Ca2+−conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiology, 154, 733-743.
Ma, W., Yoshioka, K., Gehring, C. & Berkowitz, G.A. (2010) The Function of Cyclic Nucleotide-Gated Channels in Biotic Stress. In: Demidchik, V. & Maathuis, F. (Eds.) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 159-174.
Ma, Y. & Berkowitz, G.A. (2016) NO and Ca2+: critical components of cytosolic signaling systems involved in stomatal immune responses.
Ma, Y., Walker, R.K., Zhao, Y. & Berkowitz, G.A. (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proceedings of the National Academy of Sciences, 109, 19852-19857.
Ma, Y., Zhao, Y. & Berkowitz, G.A. (2017) Intracellular Ca2+ is important for flagellin-triggered defense in Arabidopsis and involves inositol polyphosphate signaling. Journal of Experimental Botany, 68, 3617-3628.
Ma, Y., Zhao, Y., Walker, R.K. & Berkowitz, G.A. (2013) Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+−dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiology, 163, 1459-1471.
Mäser, P., Thomine, S., Schroeder, J.I. et al. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646-1667.
Matulef, K. & Zagotta, W.N. (2003) Cyclic nucleotide-gated ion channels. Annual Review of Cell and Developmental Biology, 19, 23-44.
Mercier, R.W., Rabinowitz, N.M., Ali, R., Gaxiola, R.A. & Berkowitz, G.A. (2004) Yeast hygromycin sensitivity as a functional assay of cyclic nucleotide gated cation channels. Plant Physiology and Biochemistry, 42, 529-536.
Moeder, W., Urquhart, W., Ung, H. & Yoshioka, K. (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Molecular Plant, 4, 442-452.
Muller, E.M., Locke, E.G. & Cunningham, K.W. (2001) Differential regulation of two Ca 2 influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics, 159, 1527-1538.
Obrdlik, P. (2004) Manual for the use of mating-based Split ubiquitin system “mbSUS.” Manual version B, B.
Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A. et al. (2010) Ca2+ signaling by plant Arabidopsis thaliana pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 107, 21193-21198.
Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J. & Scheel, D. (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal, 68, 100-113.
Rasul, S., Dubreuil-Maurizi, C., Lamotte, O., Koen, E., Poinssot, B., Alcaraz, G. et al. (2012) Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant, Cell & Environment, 35, no-no.
Shuart, N.G., Haitin, Y., Camp, S.S., Black, K.D. & Zagotta, W.N. (2011) Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nature Communications, 2, 457.
Teng, Y., Xu, W. & Ma, M. (2010) cGMP is required for seed germination in Arabidopsis thaliana. Journal of Plant Physiology, 167, 885-889.
Thor, K. & Peiter, E. (2014) Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. The New Phytologist, 204, 873-881.
Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D. et al. (2019) A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 572, 131-135.
Urquhart, W., Chin, K., Ung, H., Moeder, W. & Yoshioka, K. (2011) The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+−dependent physiological responses and act in a synergistic manner. Journal of Experimental Botany, 62, 3671-3682.
Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W., Ali, R., Berkowitz, G.A. & Yoshioka, K. (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Molecular Biology, 65, 747-761.
Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C. et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal, 40, 428-438.
Wang, L., Ning, Y., Sun, J., Wilkins, K.A., Matthus, E., McNelly, R.E. et al. (2022) Arabidopsis thaliana CYCLIC NUCLEOTIDE-GATED CHANNEL2 mediates extracellular ATP signal transduction in root epidermis. New Phytologist, 234, 412-421.
Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y. et al. (2017) CNGC2 is a Ca2+ Influx Channel that prevents accumulation of Apoplastic Ca2+ in the leaf. Plant Physiology, 173, 1342-1354.
Ward, J.M., Mäser, P. & Schroeder, J.I. (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annual Review of Physiology, 71, 59-82.
Yamaguchi, Y. & Huffaker, A. (2011) Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 14, 351-357.
Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E. & Ryan, C.A. (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 22, 508-522.
Yoo, S.-D., Cho, Y.-H. & Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.
Yoshioka, K., Moeder, W., Kang, H., Kachroo, P., Masmoudi, K., Berkowitz, G. et al. (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. Plant Cell, 18, 747-763.
Zelman, A.K., Dawe, A., Gehring, C. & Berkowitz, G.A. (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Frontiers in Plant Science, 3, 95.
Zhao, Y., Qi, Z. & Berkowitz, G.A. (2013) Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiology, 163, 555-565.
Zhorov, B.S. & Tikhonov, D.B. (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. Journal of Neurochemistry, 88, 782-799.
Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D.G., Felix, G. et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764-767.

Auteurs

Yi Ma (Y)

Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA.

Gerald A Berkowitz (GA)

Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH