Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels.
Arabidopsis thaliana
CNGC
calcium
innate immunity
thermosensing
thermotolerance
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
revised:
30
12
2022
received:
20
10
2022
accepted:
05
01
2023
pubmed:
13
1
2023
medline:
21
3
2023
entrez:
12
1
2023
Statut:
ppublish
Résumé
Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca
Substances chimiques
Cyclic Nucleotide-Gated Cation Channels
0
Arabidopsis Proteins
0
Calcium
SY7Q814VUP
CNGC6 protein, Arabidopsis
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1223-1236Informations de copyright
© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Abdel-Hamid, H., Chin, K., Moeder, W., Shahinas, D., Gupta, D. & Yoshioka, K. (2013) A suppressor screen of the chimeric AtCNGC11/12 reveals residues important for intersubunit interactions of cyclic nucleotide-gated ion channels. Plant Physiology, 162, 1681-1693.
Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S. et al. (2007) Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell, 19, 1081-1095.
Ali, R., Zielinski, R.E. & Berkowitz, G. (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. Journal of Experimental Botany, 57, 125-138.
Aslam, S.N., Newman, M., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T. et al. (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Current Biology, 18, 1078-1083.
Balagué, C., Lin, B., Alcon, C., Flottes, G., Malmström, S., Köhler, C. et al. (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 15, 365-379.
Biel, M. (2009) Cyclic nucleotide-regulated cation channels. The Journal of Biological Chemistry, 284, 9017-9021.
Biel, M. & Michalakis, S. (2009) Cyclic Nucleotide-Gated Channels. In: cGMP: Generators, Effectors and Therapeutic Implications. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 111-136.
Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P. et al. (2010) Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature, 464, 418-422.
Chan, C.W.M., Schorrak, L.M., Smith, R.K., Bent, A.F. & Sussman, M.R. (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiology, 132, 728-731.
Charpentier, M., Sun, J., Martins, T.V., Radhakrishnan, G.V., Findlay, K., Soumpourou, E. et al. (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science, 352, 1102-1105.
Chen, D., Cao, Y., Li, H., Kim, D., Ahsan, N., Thelen, J. et al. (2017) Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nature Communications, 8, 1-13.
Chin, K., DeFalco, T., Moeder, W. & Yoshioka, K. (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiology, 163, 611-624.
Chou, H., Zhu, Y., Ma, Y. & Berkowitz, G.A. (2016) The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca 2+ as a secondary cytosolic messenger. Plant Journal, 85, 494-506.
Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K. & Bent, A.F. (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America, 97, 9323-9328.
Dietrich, P., Anschütz, U., Kugler, A. & Becker, D. (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biology, 12, 80-93.
Duong, H.N., Cho, S., Wang, L., Pham, A.Q., Davies, J.M. & Stacey, G. (2022) Cyclic nucleotide-gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. The Plant Journal, 109, 1386-1396.
Ferrando, A., Kron, S.J., Rios, G., Fink, G.R. & Serrano, R. (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15, 5470-5481.
Finka, A., Cuendet, A.F.H., Maathuis, F.J.M., Saidi, Y. & Goloubinoff, P. (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 24, 3333-3348.
Fortuna, A., Lee, J., Ung, H., Chin, K., Moeder, W. & Yoshioka, K. (2015) Crossroads of stress responses, development and flowering regulation- the multiple roles of cyclic nucleotide gated Ion Channel 2. Plant Signaling & Behavior, 10, e989758.
Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D. et al. (2012) A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. Plant Journal, 70, 1056-1069.
Gao, J., Wang, N. & Wang, G.-X. (2013) Saccharomyces cerevisiae-induced stomatal closure mainly mediated by salicylhydroxamic acid-sensitive peroxidases in Vicia faba. Plant Physiology and Biochemistry, 65, 27-31.
Gao, Q.-F., Gu, L.-L., Wang, H.-Q., Fei, C.-F., Fang, X., Hussain, J. et al. (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proceedings of the National Academy of Sciences, 113, 3096-3101.
Govrin, E.M. & Levine, A. (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751-757.
Hossain, M.A., Ye, W., Munemasa, S., Nakamura, Y., Mori, I.C. & Murata, Y. (2014) Cyclic adenosine 5′-diphosphoribose (cADPR) cyclic guanosine 3′,5′-monophosphate positively function in Ca2+ elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cel G. Noctor, ed. Plant Biology, 16, 1140-1144.
Hua, B., Mercier, R.W., Zielinski, R.E. & Berkowitz, G.A. (2003) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 41, 945-954.
Huffaker, A., Pearce, G. & Ryan, C.A. (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 103, 10098-10103.
Jeworutzki, E., Roelfsema, M.R.G., Anschütz, U., Krol, E., Elzenga, J.T.M., Felix, G. et al. (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant Journal, 62, 367-378.
Jurkowski, G.I., Smith, R.K., Yu, I., Ham, J.H., Sharma, S.B., Klessig, D.F. et al. (2004) Arabidopsis DND2 , a second cyclic nucleotide-gated Ion Channel gene for which mutation causes the “ defense, No death ” phenotype. Molecular Plant-Microbe Interactions, 17, 511-520.
Köhler, C., Merkle, T., Roby, R. & Neuhaus, G. (2001) Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta, 213, 327-332.
Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B. et al. (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry, 285, 13471-13479.
Kwaaitaal, M., Huisman, R., Maintz, J., Reinstädler, A. & Panstruga, R. (2011) Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. The Biochemical Journal, 440, 355-365.
Ladwig, F., Dahlke, R.I., Stührwohldt, N., Hartmann, J., Harter, K. & Sauter, M. (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell, 27, 1718-1729.
Leng, Q., Mercier, R.W., Hua, B.-G., Fromm, H. & Berkowitz, G.A. (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiology, 128, 400-410.
Leng, Q., Mercier, R.W., Yao, W. & Berkowitz, G.A. (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiology, 121, 753-761.
Li, J., Jia, H. & Wang, J. (2014) cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Reports, 33, 447-459.
Lu, M., Zhang, Y., Tang, S., Pan, J., Yu, Y., Han, J. et al. (2016) AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. Journal of Experimental Botany, 67, 809-819.
Ma, W. & Berkowitz, G.A. (2011) Cyclic Nucleotide Gated Channels (CNGCs) and the Generation of Ca2+ Signals. In: Luan, S. (Ed.) Coding and Decoding of Calcium Signals in Plants. Signaling and Communication in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 93-110.
Ma, W., Qi, Z., Smigel, A., Walker, R.K., Verma, R. & Berkowitz, G.A. (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proceedings of the National Academy of Sciences of the United States of America, 106, 20995-21000.
Ma, W., Smigel, A., Walker, R.K., Moeder, W., Yoshioka, K. & Berkowitz, G. (2010) Leaf senescence signaling: the Ca2+−conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiology, 154, 733-743.
Ma, W., Yoshioka, K., Gehring, C. & Berkowitz, G.A. (2010) The Function of Cyclic Nucleotide-Gated Channels in Biotic Stress. In: Demidchik, V. & Maathuis, F. (Eds.) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 159-174.
Ma, Y. & Berkowitz, G.A. (2016) NO and Ca2+: critical components of cytosolic signaling systems involved in stomatal immune responses.
Ma, Y., Walker, R.K., Zhao, Y. & Berkowitz, G.A. (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proceedings of the National Academy of Sciences, 109, 19852-19857.
Ma, Y., Zhao, Y. & Berkowitz, G.A. (2017) Intracellular Ca2+ is important for flagellin-triggered defense in Arabidopsis and involves inositol polyphosphate signaling. Journal of Experimental Botany, 68, 3617-3628.
Ma, Y., Zhao, Y., Walker, R.K. & Berkowitz, G.A. (2013) Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+−dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiology, 163, 1459-1471.
Mäser, P., Thomine, S., Schroeder, J.I. et al. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646-1667.
Matulef, K. & Zagotta, W.N. (2003) Cyclic nucleotide-gated ion channels. Annual Review of Cell and Developmental Biology, 19, 23-44.
Mercier, R.W., Rabinowitz, N.M., Ali, R., Gaxiola, R.A. & Berkowitz, G.A. (2004) Yeast hygromycin sensitivity as a functional assay of cyclic nucleotide gated cation channels. Plant Physiology and Biochemistry, 42, 529-536.
Moeder, W., Urquhart, W., Ung, H. & Yoshioka, K. (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Molecular Plant, 4, 442-452.
Muller, E.M., Locke, E.G. & Cunningham, K.W. (2001) Differential regulation of two Ca 2 influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics, 159, 1527-1538.
Obrdlik, P. (2004) Manual for the use of mating-based Split ubiquitin system “mbSUS.” Manual version B, B.
Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A. et al. (2010) Ca2+ signaling by plant Arabidopsis thaliana pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 107, 21193-21198.
Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J. & Scheel, D. (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal, 68, 100-113.
Rasul, S., Dubreuil-Maurizi, C., Lamotte, O., Koen, E., Poinssot, B., Alcaraz, G. et al. (2012) Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant, Cell & Environment, 35, no-no.
Shuart, N.G., Haitin, Y., Camp, S.S., Black, K.D. & Zagotta, W.N. (2011) Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nature Communications, 2, 457.
Teng, Y., Xu, W. & Ma, M. (2010) cGMP is required for seed germination in Arabidopsis thaliana. Journal of Plant Physiology, 167, 885-889.
Thor, K. & Peiter, E. (2014) Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. The New Phytologist, 204, 873-881.
Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D. et al. (2019) A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 572, 131-135.
Urquhart, W., Chin, K., Ung, H., Moeder, W. & Yoshioka, K. (2011) The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+−dependent physiological responses and act in a synergistic manner. Journal of Experimental Botany, 62, 3671-3682.
Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W., Ali, R., Berkowitz, G.A. & Yoshioka, K. (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Molecular Biology, 65, 747-761.
Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C. et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal, 40, 428-438.
Wang, L., Ning, Y., Sun, J., Wilkins, K.A., Matthus, E., McNelly, R.E. et al. (2022) Arabidopsis thaliana CYCLIC NUCLEOTIDE-GATED CHANNEL2 mediates extracellular ATP signal transduction in root epidermis. New Phytologist, 234, 412-421.
Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y. et al. (2017) CNGC2 is a Ca2+ Influx Channel that prevents accumulation of Apoplastic Ca2+ in the leaf. Plant Physiology, 173, 1342-1354.
Ward, J.M., Mäser, P. & Schroeder, J.I. (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annual Review of Physiology, 71, 59-82.
Yamaguchi, Y. & Huffaker, A. (2011) Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 14, 351-357.
Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E. & Ryan, C.A. (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 22, 508-522.
Yoo, S.-D., Cho, Y.-H. & Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.
Yoshioka, K., Moeder, W., Kang, H., Kachroo, P., Masmoudi, K., Berkowitz, G. et al. (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. Plant Cell, 18, 747-763.
Zelman, A.K., Dawe, A., Gehring, C. & Berkowitz, G.A. (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Frontiers in Plant Science, 3, 95.
Zhao, Y., Qi, Z. & Berkowitz, G.A. (2013) Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiology, 163, 555-565.
Zhorov, B.S. & Tikhonov, D.B. (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. Journal of Neurochemistry, 88, 782-799.
Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D.G., Felix, G. et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764-767.