Bioelectric Fields at the Beginnings of Life.

bioelectricity mitochondria origins of life quantum mechanics thermal vents thermodynamics

Journal

Bioelectricity
ISSN: 2576-3113
Titre abrégé: Bioelectricity
Pays: United States
ID NLM: 101747121

Informations de publication

Date de publication:
01 Dec 2022
Historique:
entrez: 13 1 2023
pubmed: 14 1 2023
medline: 14 1 2023
Statut: ppublish

Résumé

The consensus on the origins of life is that it involved organization of prebiotic chemicals according to the underlying principles of thermodynamics to dissipate energy derived from photochemical and/or geochemical sources. Leading theories tend to be chemistry-centric, revolving around either metabolism or information-containing polymers first. However, experimental data also suggest that bioelectricity and quantum effects play an important role in biology, which might suggest that a further factor is required to explain how life began. Intriguingly, in the early part of 20th century, the concept of the "morphogenetic field" was proposed by Gurwitsch to explain how the shape of an organism was determined, while a role for quantum mechanics in biology was suggested by Bohr and Schrödinger, among others. This raises the question as to the potential of these phenomena, especially bioelectric fields, to have been involved in the origin of life. It points to the possibility that as bioelectricity is universally prevalent in biological systems today, it represents a more complex echo of an electromagnetic skeleton which helped shape life into being. It could be argued that as a flow of ions creates an electric field, this could have been pivotal in the formation of an energy dissipating structure, for instance, in deep sea thermal vents. Moreover, a field theory might also hint at the potential involvement of nontrivial quantum effects in life. Not only might this perspective help indicate the origins of morphogenetic fields, but also perhaps suggest where life may have started, and whether metabolism or information came first. It might also help to provide an insight into aging, cancer, consciousness, and, perhaps, how we might identify life beyond our planet. In short, when thinking about life, not only do we have to consider the accepted chemistry, but also the fields that must also shape it. In effect, to fully understand life, as well as the yin of accepted particle-based chemistry, there is a yang of field-based interaction and an ethereal skeleton.

Identifiants

pubmed: 36636557
doi: 10.1089/bioe.2022.0012
pii: 10.1089/bioe.2022.0012
pmc: PMC9810354
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

237-247

Informations de copyright

© Alistair V.W. Nunn et al. 2022; Published by Mary Ann Liebert, Inc.

Déclaration de conflit d'intérêts

No competing financial interests exist.

Références

Life (Basel). 2012 Nov 13;2(4):323-63
pubmed: 25371269
Orig Life Evol Biosph. 2013 Apr;43(2):137-50
pubmed: 23625038
J Bioenerg Biomembr. 1992 Aug;24(4):415-24
pubmed: 1400286
PLoS One. 2015 Apr 15;10(4):e0124070
pubmed: 25874623
Cell. 2012 Dec 21;151(7):1406-16
pubmed: 23260134
Mol Cell. 2017 Jun 15;66(6):733-734
pubmed: 28622518
Front Psychol. 2019 Dec 13;10:2688
pubmed: 31920779
Sci Rep. 2021 Aug 12;11(1):16433
pubmed: 34385582
Trends Microbiol. 2020 Apr;28(4):304-314
pubmed: 31952908
Proc Math Phys Eng Sci. 2018 Dec;474(2220):20180674
pubmed: 30602940
Phytother Res. 2020 Aug;34(8):1868-1888
pubmed: 32166791
Med Sci Sports Exerc. 2019 Nov;51(11):2375-2390
pubmed: 31626055
Eur J Philos Sci. 2021;11(1):18
pubmed: 33365106
J Chem Phys. 2015 Dec 14;143(22):225102
pubmed: 26671404
Nature. 2022 Mar;603(7900):309-314
pubmed: 35236985
Cell. 2021 Apr 15;184(8):1971-1989
pubmed: 33826908
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1096-109
pubmed: 16780790
J Phys Chem Lett. 2018 Apr 5;9(7):1689-1695
pubmed: 29537848
Mol Biol Cell. 2014 Dec 1;25(24):3835-50
pubmed: 25425556
J Mol Microbiol Biotechnol. 2007;13(1-3):1-11
pubmed: 17693707
Chem Rev. 2014 Apr 9;114(7):3466-94
pubmed: 24359189
Curr Opin Microbiol. 2011 Dec;14(6):704-11
pubmed: 22014508
Entropy (Basel). 2020 Jan 07;22(1):
pubmed: 33285852
J Exp Biol. 2015 Feb 15;218(Pt 4):515-25
pubmed: 25696815
Sci Rep. 2022 Feb 18;12(1):2851
pubmed: 35181728
Sci Rep. 2016 Dec 20;6:38543
pubmed: 27995996
J Photochem Photobiol B. 2017 Oct;175:109-124
pubmed: 28865316
Mol Biol Evol. 2002 Apr;19(4):406-15
pubmed: 11919281
Sci Rep. 2022 Apr 12;12(1):6109
pubmed: 35414166
Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7):
pubmed: 29967009
Integr Biol (Camb). 2013 Dec;5(12):1439-46
pubmed: 24166132
Br J Cancer. 2021 Jan;124(1):124-135
pubmed: 33144695
Theor Biol Med Model. 2016 Jun 06;13(1):16
pubmed: 27267202
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2844-8
pubmed: 25600069
Orig Life Evol Biosph. 2011 Feb;41(1):51-71
pubmed: 20443139
Cell Death Dis. 2015 Jan 22;6:e1609
pubmed: 25611384
Prague Med Rep. 2012;113(2):95-104
pubmed: 22691281
Int J Obes (Lond). 2022 Feb;46(2):393-399
pubmed: 34728776
Phys Chem Chem Phys. 2016 Jul 27;18(30):20033-46
pubmed: 27126878
Proc Biol Sci. 2020 Mar 11;287(1922):20192377
pubmed: 32156207
Sci Adv. 2020 Oct 7;6(41):
pubmed: 33028525
Traffic. 2021 Jun;22(6):174-179
pubmed: 33797162
Nat Ecol Evol. 2019 Dec;3(12):1705-1714
pubmed: 31686020
Biol Direct. 2009 Aug 24;4:26
pubmed: 19703272
J R Soc Interface. 2018 Nov 14;15(148):
pubmed: 30429265
J Biomol Struct Dyn. 2017 Nov;35(15):3370-3383
pubmed: 27794634
Sci Rep. 2017 Jul 14;7(1):5495
pubmed: 28710385
Bioelectricity. 2021 Mar 1;3(1):42-67
pubmed: 34476377
Open Biol. 2021 Feb;11(2):200324
pubmed: 33529553
Elife. 2021 Dec 31;10:
pubmed: 34970963
Nat Nanotechnol. 2022 Jan;17(1):98-106
pubmed: 34795441
Pharmaceuticals (Basel). 2015 Sep 30;8(4):675-95
pubmed: 26437417
Front Oncol. 2017 Jan 23;7:4
pubmed: 28168164
FEBS Lett. 2007 Jul 31;581(19):3675-80
pubmed: 17433306
Cytoskeleton (Hoboken). 2020 Mar;77(3-4):65-75
pubmed: 31782907
Curr Org Chem. 2013 Aug;17(16):1758-1770
pubmed: 24039543
Int J Mol Sci. 2009 Apr 22;10(4):1853-1871
pubmed: 19468343
Mol Biol Evol. 2021 Jan 4;38(1):31-47
pubmed: 32871001
Neurosci Conscious. 2020 Sep 22;2020(1):niaa016
pubmed: 32995043
Oncologist. 2013;18(1):97-103
pubmed: 23299773
Biochim Biophys Acta. 2012 May;1818(5):1123-34
pubmed: 22305677
J Biomed Sci. 2019 Jan 14;26(1):8
pubmed: 30642339
Cell Metab. 2021 Jan 5;33(1):94-109.e8
pubmed: 33159852
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20130088
pubmed: 23754820
Biol Direct. 2009 Aug 24;4:27
pubmed: 19703275
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23519-23526
pubmed: 32900941
Front Physiol. 2021 Apr 23;12:658997
pubmed: 33967829
Cell Rep. 2016 Mar 1;14(8):1850-7
pubmed: 26904951
Cell. 2019 Jul 11;178(2):374-384.e15
pubmed: 31299201
Bioessays. 2017 Jun;39(6):
pubmed: 28503790
J Gen Physiol. 2020 Nov 2;152(11):
pubmed: 32966553

Auteurs

Alistair V W Nunn (AVW)

Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom.

Geoffrey W Guy (GW)

The Guy Foundation, Chedington, Dorset, United Kingdom.

Jimmy D Bell (JD)

Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom.

Classifications MeSH