Nitrogen and light regulate symbiotic nitrogen fixation by a temperate forest tree.


Journal

Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 24 06 2022
accepted: 03 01 2023
pubmed: 14 1 2023
medline: 25 2 2023
entrez: 13 1 2023
Statut: ppublish

Résumé

Symbiotic nitrogen fixation (SNF) is a critical mechanism of ecosystem recovery, and in forests of the eastern United States, the most common tree species that supports SNF is black locust (Robinia pseudoacacia L.). Despite its prevalence, black locust's fixation strategy-whether it maintains fixation at a constant rate (obligate fixation) or reduces its fixation rate (facultative fixation)-is unknown. Here, we examined how nitrogen and light control SNF by black locust, by growing seedlings under two nitrogen levels and across four levels of light. Seedlings were harvested after 12 weeks to determine biomass changes, nodule activity, and photosynthetic rates. Black locust seedlings increased biomass growth with increasing light, but only in the absence of nitrogen addition, while seedling root:shoot (biomass) modestly declined with increasing light regardless of nitrogen level. We found that black locust behaved like a facultative fixer, and regulated fixation by excising or maintaining nodules, and by controlling nodule biomass and activity. Specifically, nitrogen addition reduced seedling investment in nodule biomass (g g

Identifiants

pubmed: 36637524
doi: 10.1007/s00442-023-05313-0
pii: 10.1007/s00442-023-05313-0
doi:

Substances chimiques

Nitrogen N762921K75

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

565-574

Subventions

Organisme : Division of Environmental Biology
ID : 1440485
Organisme : Division of Environmental Biology
ID : 1637522

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Barron AR, Purves DW, Hedin LO (2011) Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511–520. https://doi.org/10.1007/s00442-010-1838-3
doi: 10.1007/s00442-010-1838-3 pubmed: 21110206
Batterman SA, Wurzburger N, Hedin LO (2013) Nitrogen and phosphorus interact to control tropical symbiotic N
doi: 10.1111/1365-2745.12138
Boring LR, Swank WT (1984a) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749. https://doi.org/10.2307/2259529
doi: 10.2307/2259529
Boring LR, Swank WT (1984b) Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudoacacia L.) stands. Forest Science 30:528–537
Carpenter DO, Taylor MK, Callaham MA, Hiers JK, Loudermilk EL, O’Brien JJ, Wurzburger N (2021) Benefit or liability? The ectomycorrhizal association may undermine tree adaptations to fire after long-term fire exclusion. Ecosystems 24:1059–1074. https://doi.org/10.1007/s10021-020-00568-7
doi: 10.1007/s10021-020-00568-7
Dovrat G, Masci T, Bakhshian H, Mayzlish Gati E, Golan S, Sheffer E (2018) Drought-adapted plants dramatically downregulate dinitrogen fixation: evidences from mediterranean legume shrubs. J Ecol 106:1534–1544. https://doi.org/10.1111/1365-2745.12940
doi: 10.1111/1365-2745.12940
Elliott KJ, Caldwell PV, Brantley ST, Miniat CF, Vose JM, Swank WT (2017) Water yield following forest–grass–forest transitions. Hydrol Earth Syst Sci 21:981–997. https://doi.org/10.5194/hess-21-981-2017
doi: 10.5194/hess-21-981-2017
Evans JR, Jakobsen I, Ögren E (1993) Photosynthetic light-response curves: 2. Gradients of light absorption and photosynthetic capacity. Planta. https://doi.org/10.1007/BF00195076
doi: 10.1007/BF00195076
Gei M, Rozendaal DMA, Poorter L, Bongers F, Sprent JI, Garner MD, Aide TM, Andrade JL et al (2018) Legume abundance along successional and rainfall gradients in neotropical forests. Nat Ecol Evol 2:1104–1111. https://doi.org/10.1038/s41559-018-0559-6
doi: 10.1038/s41559-018-0559-6 pubmed: 29807995
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Cal Agric Exp St Circ 347:32
Johnsen KH, Bongarten BC (1991) Allometry of acetylene reduction and nodule growth of Robinia pseudoacacia families subjected to varied root zone nitrate concentrations. Tree Physiol 9:507–522. https://doi.org/10.1093/treephys/9.4.507
doi: 10.1093/treephys/9.4.507 pubmed: 14972843
Knoepp JD, Vose JM, Swank WT (2008) Nitrogen deposition and cycling across an elevation and vegetation gradient in southern appalachian forests. Int J Environ Stud 65:391–410. https://doi.org/10.1080/00207230701862348
doi: 10.1080/00207230701862348
LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. https://doi.org/10.1890/06-2057.1
doi: 10.1890/06-2057.1 pubmed: 18409427
Lenth RV (2022) emmeans: estimated marginal means, aka Least-Squares Means.
Levy-Varon JH, Batterman SA, Medvigy D, Xu X, Hall JS, van Breugel M, Hedin LO (2019) Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat Commun 10:5637. https://doi.org/10.1038/s41467-019-13656-7
doi: 10.1038/s41467-019-13656-7 pmcid: 6904724 pubmed: 31822758
Liao W, Menge DNL (2016) Demography of symbiotic nitrogen-fixing trees explains their rarity and successional decline in temperate forests in the United States. PLoS ONE 11:e0164522. https://doi.org/10.1371/journal.pone.0164522
doi: 10.1371/journal.pone.0164522 pmcid: 5079550 pubmed: 27780268
Lu M, Hedin LO (2019) Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat Ecol Evol 3:239–250. https://doi.org/10.1038/s41559-018-0759-0
doi: 10.1038/s41559-018-0759-0 pubmed: 30664701
Mangiafico S (2021) rcompanion: functions to support extension education program evaluation.
McCulloch LA, Porder S (2021) Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol 231:1734–1745. https://doi.org/10.1111/nph.17519
doi: 10.1111/nph.17519 pubmed: 34058025
Menge DNL, Levin SA, Hedin LO (2008) Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc Natl Acad Sci USA 105:1573–1578. https://doi.org/10.1073/pnas.0711411105
doi: 10.1073/pnas.0711411105 pmcid: 2234186 pubmed: 18223153
Menge DNL, Levin SA, Hedin LO (2009) Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat 174:465–477. https://doi.org/10.1086/605377
doi: 10.1086/605377 pubmed: 19694561
Menge DNL, Wolf AA, Funk JL (2015) Diversity of nitrogen fixation strategies in mediterranean legumes. Nature Plants 1:15064. https://doi.org/10.1038/nplants.2015.64
doi: 10.1038/nplants.2015.64 pubmed: 27250004
Minucci JM, Miniat CF, Wurzburger N (2019) Drought sensitivity of an N
doi: 10.1002/ecy.2862
Nowacki GJ, Abrams MD (2008) The demise of fire and “mesophication” of forests in the eastern United States. Bioscience 58:123–138. https://doi.org/10.1641/B580207
doi: 10.1641/B580207
Patriarca EJ, Tate R, Iaccarino M (2002) Key role of bacterial NH4+ metabolism in rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222. https://doi.org/10.1128/MMBR.66.2.203-222.2002
doi: 10.1128/MMBR.66.2.203-222.2002 pmcid: 120787 pubmed: 12040124
R Core Team (2022) R: A language for statistical computer. R Foundation for Statistical Computing, Vienna, Austria.
Sheffer E, Batterman SA, Levin SA, Hedin LO (2015) Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nature Plants 1:15182. https://doi.org/10.1038/nplants.2015.182
doi: 10.1038/nplants.2015.182 pubmed: 27251717
Staccone A, Liao W, Perakis S, Compton J, Clark CM, Menge D (2020) A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Global Biogeochem Cycles. https://doi.org/10.1029/2019GB006241
doi: 10.1029/2019GB006241 pmcid: 7359885 pubmed: 32665747
Taylor BN, Menge DNL (2018) Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants 4:655–661. https://doi.org/10.1038/s41477-018-0231-9
doi: 10.1038/s41477-018-0231-9 pubmed: 30127409
Truchet GL, Dazzo FB (1982) Morphogenesis of lucerne root nodules incited by Rhizobium meliloti in the presence of combined nitrogen. Planta 154:352–360. https://doi.org/10.1007/BF00393915
doi: 10.1007/BF00393915 pubmed: 24276164
Ursino DJ, Hunter DM, Laing RD, Keighley JLS (1982) Nitrate modification of photosynthesis and photoassimilate export in young nodulated soybean plants. Can J Bot 60:2665–2670. https://doi.org/10.1139/b82-323
doi: 10.1139/b82-323
Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree. For Ecol Manage 384:287–302. https://doi.org/10.1016/j.foreco.2016.10.057
doi: 10.1016/j.foreco.2016.10.057 pmcid: 6143167 pubmed: 30237654
Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans R Soc B 368:20130119. https://doi.org/10.1098/rstb.2013.0119
doi: 10.1098/rstb.2013.0119 pmcid: 3682739 pubmed: 23713117
Walsh KB, Thorpe MR, Minchin PEH (1998) Photoassimilate partitioning in nodulated soybean II. The effect of changes in photoassimilate availability shows that nodule permeability to gases is not linked to the supply of solutes or water. J Exp Bot 49:1817–1825. https://doi.org/10.1093/jxb/49.328.1817
doi: 10.1093/jxb/49.328.1817
Wang X, Guo W, Du N, Guo W, Pang J (2020) Rapid nitrogen fixation contributes to similar growth and photosynthetic rate of Robinia pseudoacacia supplied with different levels of nitrogen. Tree Physiol 41:177–189. https://doi.org/10.1093/treephys/tpaa129
doi: 10.1093/treephys/tpaa129
Wurzburger N, Hedin LO (2016) Taxonomic identity determines N
doi: 10.1111/ele.12543 pubmed: 26584690
Wurzburger N, Miniat CF (2014) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126. https://doi.org/10.1007/s00442-013-2851-0
doi: 10.1007/s00442-013-2851-0 pubmed: 24337710
Wurzburger N, Motes JI, Miniat CF (2022) A framework for scaling symbiotic nitrogen fixation using the most widespread nitrogen fixer in eastern deciduous forests of the United States. J Ecol 110:569–581. https://doi.org/10.1111/1365-2745.13819
doi: 10.1111/1365-2745.13819

Auteurs

Sarah L Ottinger (SL)

Odum School of Ecology, University of Georgia, Athens, GA, USA.

Chelcy Ford Miniat (CF)

USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM, USA.

Nina Wurzburger (N)

Odum School of Ecology, University of Georgia, Athens, GA, USA. ninawurz@uga.edu.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH