Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 03 08 2022
accepted: 01 12 2022
medline: 29 3 2023
pubmed: 16 1 2023
entrez: 15 1 2023
Statut: ppublish

Résumé

Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.

Identifiants

pubmed: 36642776
doi: 10.1007/s11033-022-08168-5
pii: 10.1007/s11033-022-08168-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3705-3721

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Noguera JL, Rodriguez C, Varona L, Tomas A, Munoz G, Ramirez O, Barragan C, Arque M, Bidanel JP, Amills M, Ovilo C (2009) A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL. BMC Genomics 10:1–12. https://doi.org/10.1186/1471-2164-10-636
doi: 10.1186/1471-2164-10-636
Mills KM, Schinckel AP, Stevens JG, Casey TM, Stewart KR (2020) Evaluation of on farm indicators of gilt reproductive performance potential at 21 days of age. Transl Anim Sci 4:210. https://doi.org/10.1093/tas/txaa210
doi: 10.1093/tas/txaa210
Sanchez-Davila F, Bernal-Barragan H, Padilla-Rivas G, Del Bosque-González AS, Vázquez-Armijo JF, Ledezma-Torres RA (2015) Environmental factors and ram influence litter size, birth, and weaning weight in Saint Croix hair sheep under semi-arid conditions in Mexico. Trop Anim Health Prod 47:825–831. https://doi.org/10.1007/s11250-015-0795-6
doi: 10.1007/s11250-015-0795-6 pubmed: 25782564
Argente MJ (2016) Major components in limiting litter size. In: Payan Carreira R (ed) Insights from animal reproduction. InTech, London, pp 87–114
Pope WF (1994) Embryonic mortality in swine. Embryonic Mortal Domest Species 53:77
Buske B, Sternstein I, Brockmann G (2006) QTL and candidate genes for fecundity in sows. Anim Reprod Sci 95:167–183. https://doi.org/10.1016/j.anireprosci.2005.12.015
doi: 10.1016/j.anireprosci.2005.12.015 pubmed: 16460893
Distl O (2007) Mechanisms of regulation of litter size in pigs on the genome level. Reprod Domest Anim 42:10–16. https://doi.org/10.1111/j.1439-0531.2007.00887.x
doi: 10.1111/j.1439-0531.2007.00887.x pubmed: 17688597
Bolet G, Ollivier L, Dando P (1989) Selection for prolificacy in the pig. I. Results of an eleven-generation selection experiment. Genet Sel Evol 21:93–106. https://doi.org/10.1186/1297-9686-21-1-93
doi: 10.1186/1297-9686-21-1-93 pmcid: 2712568
Town SC, Putman CT, Turchinsky NJ, Dixon WT, Foxcroft GR (2004) Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 128:443–454. https://doi.org/10.1530/rep.1.00069
doi: 10.1530/rep.1.00069 pubmed: 15454639
Vanderhaeghe C, Dewulf J, de Kruif A, Maes D (2013) Non-infectious factors associated with stillbirth in pigs: a review. Anim Reprod Sci 139:76–88. https://doi.org/10.1016/j.anireprosci.2013.03.007
doi: 10.1016/j.anireprosci.2013.03.007 pubmed: 23602009
Johnson RK, Zimmerman DR, Kittock R (1984) Selection for components of reproduction in swine. Livest Prod Sci 11:541–558. https://doi.org/10.1016/0301-6226(84)90070-8
doi: 10.1016/0301-6226(84)90070-8
Reproto RO (2020) Genetic selection and advances in swine breeding: a review of its impact on sow’s reproductive traits. International Journal of Research and Review 10:41–52
Rutherford KMD, Baxter EM, D’eath RB, Turner SP, Arnott G, Roehe R, Ask B, Sandøe P, Moustsen VA, Thorup F, Edwards SA (2013) The welfare implications of large litter size in the domestic pig I: biological factors. Anim Welf 22:199–218. https://doi.org/10.7120/09627286.22.2.199
doi: 10.7120/09627286.22.2.199
Grandinson K, Rydhmer L, Strandberg E, Lund MS (2000) Estimation of genetic parameters for mortality and causes of death in piglets. In: 51st Annual Meeting of the European Association of Animal Production, The Hague, pp 21–24
Kemp B, Da Silva CLA, Soede NM (2018) Recent advances in pig reproduction: focus on impact of genetic selection for female fertility. Reprod Domest Anim 53:28–36. https://doi.org/10.1111/rda.13264
doi: 10.1111/rda.13264 pubmed: 30238653
Langendijk P, Plush K (2019) Parturition and Its Relationship with Stillbirths and Asphyxiated Piglets. Animals 9:885. https://doi.org/10.3390/ani9110885
doi: 10.3390/ani9110885 pubmed: 31683527 pmcid: 6912372
Canario L, Cantoni ELBE, Le Bihan E, Caritez JC, Billon Y, Bidanel JP, Foulley JL (2006) Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J Anim Sci 84:3185–3196. https://doi.org/10.2527/jas.2005-775
doi: 10.2527/jas.2005-775 pubmed: 17093210
Soller M (1994) Marker assisted selection-an overview. Anim Biotechnol 5:193–207. https://doi.org/10.1080/10495399409525821
doi: 10.1080/10495399409525821
Rohrer GA, Ford JJ, Wise TH, Vallet JL, Christenson RK (1999) Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J Anim Sci 77:1385–1391. https://doi.org/10.2527/1999.7761385x
doi: 10.2527/1999.7761385x pubmed: 10375216
Rathje TA, Rohrer GA, Johnson RK (1997) Evidence for quantitative trait loci affecting ovulation rate in pigs. J Anim Sci 75:1486–1494. https://doi.org/10.2527/1997.7561486x
doi: 10.2527/1997.7561486x pubmed: 9250508
Campbell EMG, Nonneman D, Rohrer GA (2003) Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8. J Anim Sci 81:1706–1714. https://doi.org/10.2527/2003.8171706x
doi: 10.2527/2003.8171706x pubmed: 12854806
King AH, Jiang Z, Gibson JP, Haley CS, Archibald AL (2003) Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biol Reprod 68:2172–2179. https://doi.org/10.1095/biolreprod.102.012955
doi: 10.1095/biolreprod.102.012955 pubmed: 12606397
Rückert C, Bennewitz J (2010) Joint QTL analysis of three connected F2-crosses in pigs. Genet Sel Evol 42:1–12. https://doi.org/10.1186/1297-9686-42-40
doi: 10.1186/1297-9686-42-40
Li X, Ye J, Han X, Qiao R, Li X, Lv G, Wang K (2020) Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 112(1):199–206. https://doi.org/10.1016/j.ygeno.2019.01.014
doi: 10.1016/j.ygeno.2019.01.014 pubmed: 30707936
Ma X, Li PH, Zhu MX, He LC, Sui SP, Gao S, Su GS, Ding NS, Huang Y, Lu ZQ, Huang XG (2018) Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 12(12):2453–2461. https://doi.org/10.1017/s1751731118000332
doi: 10.1017/s1751731118000332 pubmed: 29534777
Guo X, Su G, Christensen OF, Janss L, Lund MS (2016) Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs. BMC Genomics 17:1–12. https://doi.org/10.1186/s12864-016-2806-z
doi: 10.1186/s12864-016-2806-z
Guo YM, Lee GJ, Archibald AL, Haley CS (2008) Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan× Large White populations. Anim Genet 39:486–495. https://doi.org/10.1111/j.1365-2052.2008.01756.x
doi: 10.1111/j.1365-2052.2008.01756.x pubmed: 18651874
Rosendo A, Iannuccelli N, Gilbert H, Riquet J, Billon Y, Amigues Y, Milan D, Bidanel JP (2012) Microsatellite mapping of quantitative trait loci affecting female reproductive tract characteristics in Meishan× Large White F2 pigs. J Anim Sci 90:37–44. https://doi.org/10.2527/jas.2011-3989
doi: 10.2527/jas.2011-3989 pubmed: 21948608
Tart JK, Johnson RK, Bundy JW, Ferdinand NN, McKnite AM, Wood JR, Miller PS, Rothschild MF, Spangler ML, Garrick DJ, Kachman SD (2013) Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim Genet 44:387–397. https://doi.org/10.1111/age.12028
doi: 10.1111/age.12028 pubmed: 23437861
Schneider JF, Nonneman DJ, Wiedmann RT, Vallet JL, Rohrer GA (2014) Genome wide association and identification of candidate genes for ovulation rate in swine. J Anim Sci 92:3792–3803. https://doi.org/10.2527/jas.2014-7788
doi: 10.2527/jas.2014-7788 pubmed: 24987066
Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B (2014) High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC Genomics 15:1–12. https://doi.org/10.1186/1471-2164-15-542
doi: 10.1186/1471-2164-15-542
Onteru SK, Fan B, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF (2012) A whole-genome association study for pig reproductive traits. Anim Genet 43:18–26. https://doi.org/10.1111/j.1365-2052.2011.02213.x
doi: 10.1111/j.1365-2052.2011.02213.x pubmed: 22221021
Coster A, Madsen O, Heuven HC, Dibbits B, Groenen MA, van Arendonk JA, Bovenhuis H (2012) The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS ONE 7:31825. https://doi.org/10.1371/journal.pone.0031825
doi: 10.1371/journal.pone.0031825
Bidanel JP (2011) Biology and genetics of reproduction. Genet Pig. 2:222–32
Rothschild MF (1996) Genetics and reproduction in the pig. Anim Reprod Sci 42:143–151. https://doi.org/10.1016/0378-4320(96)01486-8
doi: 10.1016/0378-4320(96)01486-8
Drogemuller C, Hamann H, Distl O (2001) Candidate gene markers for litter size in different German pig lines. J Anim Sci 79:2565–2570. https://doi.org/10.2527/2001.79102565x
doi: 10.2527/2001.79102565x pubmed: 11721835
Vallet JL, Freking BA, Leymaster KA, Christenson RK (2005) Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine. Anim Genet 36:97–103. https://doi.org/10.1111/j.1365-2052.2005.01233.x
doi: 10.1111/j.1365-2052.2005.01233.x pubmed: 15771717
He LC, Li PH, Ma X, Sui SP, Gao S, Kim SW, Gu YQ, Huang Y, Ding NS, Huang RH (2017) Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim Genet 48(1):48–54. https://doi.org/10.1111/age.12492
doi: 10.1111/age.12492 pubmed: 27615062
Lei B, Gao S, Luo LF, Xia XY, Jiang SW, Deng CY, Xiong YZ, Li FE (2011) A SNP in the miR-27a gene is associated with litter size in pigs. Mol Biol Rep 38(6):3725–3729. https://doi.org/10.1007/s11033-010-0487-2
doi: 10.1007/s11033-010-0487-2 pubmed: 21104015
Getmantseva LV, Bakoev SY, Shevtsova VS, Kolosov AY, Bakoev NF and Kolosova MA (2020) Assessing the Effect of SNPs on Litter Traits in Pigs. Scientifica 2020.
Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA (2012) KPNA7, an oocyte-and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod Fertil Dev 24:382–391. https://doi.org/10.1071/RD11119
doi: 10.1071/RD11119 pubmed: 22281085
Couse JF, Korach K (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocrine Rev 20:358–417. https://doi.org/10.1210/edrv.20.3.0370
doi: 10.1210/edrv.20.3.0370
Munoz G, Ovilo C, Amills M, Rodriguez C (2004) Mapping of the porcine oestrogen receptor 2 gene and association study with litter size in Iberian pigs. Anim Genet 35:242–244. https://doi.org/10.1111/j.1365-2052.2004.01141.x
doi: 10.1111/j.1365-2052.2004.01141.x pubmed: 15147399
Kowalski AA, Graddy LG, Vale-Cruz DS, Choi I, Katzenellenbogen BS, Simmen FA, Simmen RC (2002) Molecular cloning of porcine estrogen receptor-β complementary DNAs and developmental expression in peri implantation embryos. Biol Reprod 66:760–769. https://doi.org/10.1095/biolreprod66.3.760
doi: 10.1095/biolreprod66.3.760 pubmed: 11870084
Rothschild F (1996) Genetics and reproduction in the pig. Reprod Livest Sci 42:143–151. https://doi.org/10.1016/0378-4320(96)01486-8
doi: 10.1016/0378-4320(96)01486-8
Muñoz G, Ovilo C, Estellé J, Silió L, Fernández A, Rodriguez C (2007) Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line. Genet Sel Evol 39:1–12. https://doi.org/10.1186/1297-9686-39-2-195
doi: 10.1186/1297-9686-39-2-195
Dall’Olio S, Fontanesi L, Tognazzi L, Buttazzoni L, Gallo M, Russo V (2011) ESR1 and ESR2 gene markers are not associated with number of piglets born alive in Italian Large White sows. Ital J Anim Sci 10:35. https://doi.org/10.4081/ijas.2011.e35
doi: 10.4081/ijas.2011.e35
Isler BJ, Irvin KM, Neal SM, Moeller SJ, Davis ME (2002) Examination of the relationship between the estrogen receptor gene and reproductive traits in swine. J Anim Sci 80:2334–2339
pubmed: 12350010
Laliotis GP, Marantidis A, Avdi M (2017) Association of BF, RBP4, and ESR2 genotypes with litter size in an autochthonous pig population. Anim Biotechnol 28:138–143. https://doi.org/10.1080/10495398.2016.1242490
doi: 10.1080/10495398.2016.1242490 pubmed: 27824510
Magni P, Motta M, Martini L (2000) Leptin: a possible link between food intake, energy expenditure, and reproductive function. Regul Pept 92:51–56. https://doi.org/10.1016/S0167-0115(00)00149-X
doi: 10.1016/S0167-0115(00)00149-X pubmed: 11024565
Al-Hussaniy HA, Alburghaif AH, Naji MA (2021) Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life 14:600–605
doi: 10.25122/jml-2021-0153 pubmed: 35027962 pmcid: 8742898
Neuenschwander S, Rettenberger G, Meijerink H, Jorg H, Stranzinger G (1996) Partial characterization of porcine obesity gene (OBS) and its localization to chromosome 18 by somatic cell hybrids. Anim Genet 27:275–278. https://doi.org/10.1111/j.1365-2052.1996.tb00489.x
doi: 10.1111/j.1365-2052.1996.tb00489.x pubmed: 8856925
Stratil A, Peelman L, Van Poucke M, Cepica S (1997) A HinfI PCR-RFLP at the porcine leptin (LEP) gene. Anim Genet 28:371–372. https://doi.org/10.1111/j.1365-2052.1997.tb03272.x
doi: 10.1111/j.1365-2052.1997.tb03272.x pubmed: 9363604
Perez-Montarelo D, Fernandez A, Barragan C, Noguera JL, Folch JM, Rodríguez MC, Ovilo C, Silio L, Fernandez AI (2013) Transcriptional characterization of porcine leptin and leptin receptor genes. PLoS ONE 8:66398. https://doi.org/10.1371/journal.pone.0066398
doi: 10.1371/journal.pone.0066398
Chen CC, Chang T, Su HY (2004) Characterization of porcine leptin receptor polymorphisms and their association with reproduction and production traits. Anim Biotechnol 15:89–102. https://doi.org/10.1081/ABIO-120037903
doi: 10.1081/ABIO-120037903 pubmed: 15248603
Terman A (2005) Effect of the polymorphism of prolactin receptor (PRLR) and leptin (LEP) genes on litter size in Polish pigs. J Anim Breed Genet 122:400–404. https://doi.org/10.1111/j.1439-0388.2005.00547.x
doi: 10.1111/j.1439-0388.2005.00547.x pubmed: 16274424
Rempel LA, Nonneman DJ, Wise TH, Erkens T, Peelman LJ, Rohrer GA (2010) Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine. J Anim Sci 88:1–15. https://doi.org/10.2527/jas.2009-1985
doi: 10.2527/jas.2009-1985 pubmed: 19749016
Vega RS, Castillo RMC, Barrientos NNB, Llanes-Autriz MM, Cho BW, Celia B, Villa NO (2018) Leptin (T3469C) and estrogen receptor (T1665G) gene polymorphisms and their associations to backfat thickness and reproductive traits of large white pigs (Sus scrofa L.). Philipp J Sci 147:293–300
Bing Z, Gongshe Y, Chao S, Minrui H (2010) Effects of leptin gene on litter size in Luchuan and largewhite pig.
Fu Y, Li L, Li B, Fang X, Ren S (2016) Long form leptin receptor and SNP effect on reproductive traits during embryo attachment in Suzhong sows. Anim Reprod Sci 168:57–65. https://doi.org/10.1016/j.anireprosci.2016.02.026
doi: 10.1016/j.anireprosci.2016.02.026 pubmed: 27020480
de Oliveira PJ, Facioni Guimaraes SE, Savio Lopes P, Menck Soares MA, Vieira Pires A, Gualberto Barbosa MV, de Almeida e silva TR (2006) Associations of leptin gene polymorphisms with production traits in pigs. J Anim Breed Genet 123:378–383
doi: 10.1111/j.1439-0388.2006.00611.x
Ponsuksili S, Wimmers K, Yerle M, Schellander K (2001) Mapping of 93 porcine ESTs preferentially expressed in liver. Mamm Genome 12:869–872. https://doi.org/10.1007/s00335-001-3024-8
doi: 10.1007/s00335-001-3024-8 pubmed: 11845291
Schillo KK (2009) Reproductive physiology of mammals: from farm to field and beyond. Delmar Publishers, New York
Jiang ZH, Gibson JP (1998) A PCR-RFLP marker at the porcine complement factor B gene locus shows between-population frequency variation. J Anim Sci 76:1716–1717. https://doi.org/10.2527/1998.7661716x
doi: 10.2527/1998.7661716x pubmed: 9655593
Chen LH, Wang LX, Ji YG, Zhang LC, Yan H (2009) Association of polymorphism for porcine BF gene with reproductive traits and placental efficiency in Large White. Yi Chuan 31:615–619. https://doi.org/10.3724/sp.j.1005.2009.00615
doi: 10.3724/sp.j.1005.2009.00615 pubmed: 19586862
Buske B, Brunsch C, Zeller K, Reinecke P, Brockmann G (2005) Analysis of properdin (BF) genotypes associated with litter size in a commercial pig cross population. J Anim Breed Genet 122:259–263. https://doi.org/10.1111/j.1439-0388.2005.00528.x
doi: 10.1111/j.1439-0388.2005.00528.x pubmed: 16060493
Marantidis A, Papadopoulos AI, Michailidis G, Avdi M (2013) Association of BF gene polymorphism with litter size in a commercial pig crosses population. Anim Reprod Sci 141:75–79. https://doi.org/10.1016/j.anireprosci.2013.06.011
doi: 10.1016/j.anireprosci.2013.06.011 pubmed: 23910636
Giudice LC (2006) Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best practice & research. Clin Endocrinol Metab 20:235–244. https://doi.org/10.1016/j.beem.2006.03.005
doi: 10.1016/j.beem.2006.03.005
Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS (2015) H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 7:996–1003. https://doi.org/10.15252/emmm.201505245
doi: 10.15252/emmm.201505245 pubmed: 26089099 pmcid: 4551339
Mazerbourg S, Monget P (2018) Insulin-like growth factor binding proteins and IGFBP proteases: a dynamic system regulating the ovarian folliculogenesis. Front Endocrinol 9:134. https://doi.org/10.3389/fendo.2018.00134
doi: 10.3389/fendo.2018.00134
An SM, Hwang JH, Kwon S, Yu GE, Park DH, Kang DG, Kim TW, Park HC, Ha J, Kim CW (2018) Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3 genes on litter size traits in Berkshire pigs. Anim Biotechnol 29:301–308. https://doi.org/10.1080/10495398.2017.1395345
doi: 10.1080/10495398.2017.1395345 pubmed: 29200313
Sironen AI, Uimari P, Serenius T, Mote B, Rothschild M, Vilkki J (2010) Effect of polymorphisms in candidate genes on reproduction traits in Finnish pig populations. J Anim Sci 88:821–827. https://doi.org/10.2527/jas.2009-2426
doi: 10.2527/jas.2009-2426 pubmed: 19933427
Harney JP, Ott TL, Geisert RD, Bazer FW (1993) Retinol-binding protein gene expression in cyclic and pregnant endometrium of pigs, sheep, and cattle. Biol Reprod 49:1066–1073. https://doi.org/10.1095/biolreprod49.5.1066
doi: 10.1095/biolreprod49.5.1066 pubmed: 8286572
Messer LA, Wang L, Yelich J, Pomp D, Geisert RD, Rothschild MF (1996) Linkage mapping of the retinol-binding protein 4 (RBP4) gene to porcine chromosome 14. Mamm Genome 7:396–396. https://doi.org/10.1007/s003359900117
doi: 10.1007/s003359900117 pubmed: 8661737
Brief S, Chew BP (1985) Effects of vitamin A and beta-carotene on reproductive performance in gilts. J Anim Sci 60:998–1004. https://doi.org/10.2527/jas1985.604998x
doi: 10.2527/jas1985.604998x pubmed: 3988659
Ollivier L, Messer LA, Rothschild MF, Legault C (1997) The use of selection experiments for detecting quantitative trait loci. Genet Res 69:227–232. https://doi.org/10.1017/s0016672397002802
doi: 10.1017/s0016672397002802 pubmed: 9290325
Terman A, Kmiec M, Polasik D, Rybarczyk A (2011) Association between RBP4 gene polymorphism and reproductive traits in Polish sows. J Anim Vet Adv 10:2639–2641. https://doi.org/10.3923/javaa.2011.2639.2641
doi: 10.3923/javaa.2011.2639.2641
Niu SY, Wang XP, Hao FG, Zhao RX (2008) Effect of the polymorphism of RBP4 and OPN genes on litter size in Tibet pigs. Acta Agric Scand Sect A 58:10–13. https://doi.org/10.1080/09064700802054170
doi: 10.1080/09064700802054170
Marantidis A, Laliotis GP, Avdi M (2016) Association of RBP4 genotype with phenotypic reproductive traits of sows. Genet Res Int. https://doi.org/10.1155/2016/4940532
doi: 10.1155/2016/4940532 pubmed: 26885398 pmcid: 4739226
Mencik S, Vukovic V, Spehar M, Modric M, Ostovic M, Kabalin AE (2019) Association between ESR1 and RBP4 genes and litter size traits in a hyperprolific line of Landrace× Large White cross sows. Vet Med 64:109–117. https://doi.org/10.17221/87/2018-VETMED
doi: 10.17221/87/2018-VETMED
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268. https://doi.org/10.1210/edrv.19.3.0334
doi: 10.1210/edrv.19.3.0334 pubmed: 9626554
Vincent AL, Tuggle CK, Rothschild MF, Evans G, Short TH, Southwood OI, Plastow GS (1998) The prolactin receptor gene is associated with increased litter size in pigs. Iowa State University Animal Industry Report 1(1).
Rothschild MF, Vincent AL, Tuggle CK, Evans G, Short TH, Southwood OI, Wales R, Plastow GS (1998) A mutation in the prolactin receptor gene is associated with increased litter size in pigs. Anim Genet 29:60–74
Rens BV, Lende TV (2002) Litter size and piglet traits of gilts with different prolactin receptor genotypes. Theriogenology 57:883–893. https://doi.org/10.1016/S0093-691X%2801%2900693-8
doi: 10.1016/S0093-691X%2801%2900693-8 pubmed: 11991391
Putnova L, Knoll A, Dvorak J, Cepica S (2002) A new HpaII PCR-RFLP within the porcine prolactin receptor (PRLR) gene and study of its effect on litter size and number of teats. J Anim Breed Genet 119:57–63. https://doi.org/10.1046/j.1439-0388.2002.00316.x
doi: 10.1046/j.1439-0388.2002.00316.x
Xing-ping WANG, Li-xian WANG, Zhuo-ma LR, Shi-duo SUN (2008) Analysis of PRLR and BF genotypes associated with litter size in Beijing black pig population. Agric Sci China 7:1374–1378. https://doi.org/10.1016/S1671-2927(08)60187-X
doi: 10.1016/S1671-2927(08)60187-X
Ricken A, Lochhead P, Kontogiannea M, Farookhi R (2002) Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology 143:2741–2749. https://doi.org/10.1210/endo.143.7.8908
doi: 10.1210/endo.143.7.8908 pubmed: 12072409
Tepekoy F, Akkoyunlu G, Demir R (2015) The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J Assist Reprod Genet 32:337–346. https://doi.org/10.1007/s10815-014-0409-7
doi: 10.1007/s10815-014-0409-7 pubmed: 25533332
Buimer M, Keijser R, Jebbink JM, Wehkamp D, van Kampen AH, Boer K, van der Post JA, Ris-Stalpers C (2008) Seven placental transcripts characterize HELLP-syndrome. Placenta 29:444–453. https://doi.org/10.1016/j.placenta.2008.02.007
doi: 10.1016/j.placenta.2008.02.007 pubmed: 18374411
Atli MO, Guzeloglu A, Dinc DA (2011) Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy. Anim Reprod Sci 125:94–102. https://doi.org/10.1016/j.anireprosci.2011.04.001
doi: 10.1016/j.anireprosci.2011.04.001 pubmed: 21550190
Kemp C, Willems E, Abdo S, Lambiv L, Leyns L (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and post implantation development. Dev Dyn 233:1064–1075. https://doi.org/10.1002/dvdy.20408
doi: 10.1002/dvdy.20408 pubmed: 15880404
Brown NL, Paddock SW, Sattler CA, Cronmiller C, Thomas BJ, Carroll SB (1996) Daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol 179:65–78. https://doi.org/10.1006/dbio.1996.0241
doi: 10.1006/dbio.1996.0241 pubmed: 8873754
Sun X, Mei S, Tao H, Wang G, Su L, Jiang S, Deng C, Xiong Y, Li F (2011) Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics 12:1–10. https://doi.org/10.1186/1471-2164-12-111
doi: 10.1186/1471-2164-12-111
Tao H, Mei S, Sun X, Peng X, Zhang X, Ma C, Wang L, Hua L, Li F (2013) Associations of TCF12, CTNNAL1 and WNT10B gene polymorphisms with litter size in pigs. Anim Reprod Sci 140:189–194. https://doi.org/10.1016/j.anireprosci.2013.05.013
doi: 10.1016/j.anireprosci.2013.05.013 pubmed: 23820070
Cauffman G, Van de Velde H, Liebaers I, Van Steirteghem A (2005) DAZL expression in human oocytes, preimplantation embryos and embryonic stem cells. Mol Hum Reprod 11:405–411. https://doi.org/10.1093/molehr/gah167
doi: 10.1093/molehr/gah167 pubmed: 15879466
Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77. https://doi.org/10.1038/37987
doi: 10.1038/37987 pubmed: 9288969
Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, Spiegel EK, Gilson KM (2001) Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci 79:623–633. https://doi.org/10.2527/2001.793623x
doi: 10.2527/2001.793623x pubmed: 11263822
Dall’Olio S, Fontanesi L, Tognazzi L, Russo V (2010) Genetic structure of candidate genes for litter size in Italian Large White pigs. Vet Res Commun 34:203–206. https://doi.org/10.1007/s11259-010-9380-7
doi: 10.1007/s11259-010-9380-7
Zhang YH, Mei SQ, Peng XW, Niu BY, Ren ZQ, Zuo B, Xu DQ, Lei MG, Zheng R, Jiang SW, Deng CY (2009) Molecular characterization and SNPs analysis of the porcine deleted in AZoospermia like (pDAZL) gene. Anim Reprod Sci 112:415–422. https://doi.org/10.1016/j.anireprosci.2008.05.069
doi: 10.1016/j.anireprosci.2008.05.069 pubmed: 18620821
Curtin D, Ferris HA, Häkli M, Gibson M, Janne OA, Palvimo JJ, Shupnik MA (2004) Small nuclear RING finger protein stimulates the rat luteinizing hormone-β promoter by interacting with Sp1 and steroidogenic factor-1 and protects from androgen suppression. Mol Endocrinol 18:1263–1276. https://doi.org/10.1210/me.2003-0221
doi: 10.1210/me.2003-0221 pubmed: 14988433
Saville B, Poukka H, Wormke M, Jänne OA, Palvimo JJ, Stoner M, Samudio I, Safe S (2002) Cooperative coactivation of estrogen receptor α in ZR-75 human breast cancer cells by SNURF and TATA-binding protein. J Biol Chem 277:2485–2497. https://doi.org/10.1074/jbc.M109021200
doi: 10.1074/jbc.M109021200 pubmed: 11696545
Hirvonen-Santti SJ, Sriraman V, Anttonen M, Savolainen S, Palvimo JJ, Heikinheimo M, Richards JS, Jänne OA (2004) Small nuclear RING finger protein expression during gonad development: regulation by gonadotropins and estrogen in the postnatal ovary. Endocrinology 145:2433–2444. https://doi.org/10.1210/en.2003-1328
doi: 10.1210/en.2003-1328 pubmed: 14749358
Bu-yue N, Xiao-ming L, Yuan-zhu X, Xi-biao W (2016) Identification of novel polymorphisms in porcine ring finger protein 4 and matrix metalloproteinase 9 genes and association analysis with litter size traits. J Northeast Agric Univ 23:31–38. https://doi.org/10.1016/S1006-8104(16)30056-3
doi: 10.1016/S1006-8104(16)30056-3
Niu BY, Ye LZ, Li FE, Deng CY, Jiang SW, Lei MG, Xiong YZ (2009) Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim Reprod Sci 110:283–292. https://doi.org/10.1016/j.anireprosci.2008.01.020
doi: 10.1016/j.anireprosci.2008.01.020 pubmed: 18358646
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005
doi: 10.1016/j.ajhg.2017.06.005 pubmed: 28686856 pmcid: 5501872
Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RA (2016) Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci 12:100. https://doi.org/10.7150/ijbs.13498
doi: 10.7150/ijbs.13498 pubmed: 26722221 pmcid: 4679402
Guo Y, Huang Y, Hou L, Ma J, Chen C, Ai H, Huang L, Ren J (2017) Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet Sel Evol 49:1–11. https://doi.org/10.1186/s12711-017-0295-4
doi: 10.1186/s12711-017-0295-4
Cho IC, Park HB, Ahn JS, Han SH, Lee JB, Lim HT, Yoo CK, Jung EJ, Kim DH, Sun WS, Ramayo-Caldas Y (2019) A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet 15:1008279. https://doi.org/10.1371/journal.pgen.1008279
doi: 10.1371/journal.pgen.1008279
Nosková A, Hiltpold M, Janett F, Echtermann T, Fang ZH, Sidler X, Selige C, Hofer A, Neuenschwander S, Pausch H (2021) Infertility due to defective sperm flagella caused by an intronic deletion in DNAH17 that perturbs splicing. Genetic 217:33. https://doi.org/10.1093/genetics/iyaa033
doi: 10.1093/genetics/iyaa033
Ren J, Mao H, Zhang Z, Xiao S, Ding N, Huang L (2011) A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity 106:862–868. https://doi.org/10.1038/hdy.2010.129
doi: 10.1038/hdy.2010.129 pubmed: 20978532
Ding R, Qiu Y, Zhuang Z, Ruan D, Wu J, Zhou S, Ye J, Cao L, Hong L, Xu Z, Zheng E (2021) Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs. Theriogenology 173:269–278. https://doi.org/10.1016/j.theriogenology.2021.08.012
doi: 10.1016/j.theriogenology.2021.08.012 pubmed: 34403972
Bergfelder-Drüing S, Grosse-Brinkhaus C, Lind B, Erbe M, Schellander K, Simianer H, Tholen E (2015) A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS ONE 10:0117468. https://doi.org/10.1371/journal.pone.0117468
doi: 10.1371/journal.pone.0117468
Bogacka I, Bogacki M (2011) The quantitative expression of peroxisome proliferator activated receptor (PPAR) genes in porcine endometrium through the estrous cycle and early pregnancy. J Physiol Pharmacol 62:559. https://doi.org/10.1016/S1642-431X(12)60083-7
doi: 10.1016/S1642-431X(12)60083-7 pubmed: 22204804
Guo LY, Fu JL, Wang AG (2012) Analysis of association between CRS-PCR polymorphisms of integrin β1 gene and litter size in pigs. Yi Chuan 34:879–886. https://doi.org/10.3724/sp.j.1005.2012.00879
doi: 10.3724/sp.j.1005.2012.00879 pubmed: 22805214
Wu P, Wang K, Yang Q, Zhou J, Chen D, Ma J, Tang Q, Jin L, Xiao W, Jiang A, Jiang Y (2018) Identifying SNPs and candidate genes for three litter traits using single-step GWAS across six parities in Landrace and Large White pigs. Physiol Genomics 50:1026–1035. https://doi.org/10.1152/physiolgenomics.00071.2018
doi: 10.1152/physiolgenomics.00071.2018 pubmed: 30289746
Zhang Z, Chen Z, Ye S, He Y, Huang S, Yuan X, Chen Z, Ha Z, Li J (2019) Genome-wide association study for reproductive traits in a Duroc pig population. Animals 9:732. https://doi.org/10.3390/ani9100732
doi: 10.3390/ani9100732 pubmed: 31561612 pmcid: 6826494
Chen Z, Ye S, Teng J, Diao S, Yuan X, Chen Z, Zhang H, Li J, Zhang Z (2019) Genome-wide association studies for the number of animals born alive and dead in duroc pigs. Theriogenology 139:36–42. https://doi.org/10.1016/j.theriogenology.2019.07.013
doi: 10.1016/j.theriogenology.2019.07.013 pubmed: 31362194
Wang Y, Ding X, Tan Z, Xing K, Yang T, Pan Y, Wang Y, Mi S, Sun D, Wang C (2018) Genome-wide association study for reproductive traits in a Large White pig population. Anim Genet 49:127–131. https://doi.org/10.1111/age.12638
doi: 10.1111/age.12638 pubmed: 29411893 pmcid: 5873431
Jiang Y, Tang S, Xiao W, Yun P, Ding X (2020) A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds. Asian Australas J Anim Sci 33:1400. https://doi.org/10.5713/ajas.19.0411
doi: 10.5713/ajas.19.0411 pubmed: 32054232
Mo J, Lu Y, Zhu S, Feng L, Qi W, Chen X, Xie B, Chen B, Lan G, Liang J (2022) Genome-wide association studies, runs of homozygosity analysis, and copy number variation detection to identify reproduction-related genes in Bama Xiang Pigs. Front Vet Sci. https://doi.org/10.3389/fvets.2022.892815

Auteurs

Sakshi Vaishnav (S)

Indian Veterinary Research Institute, Bareilly, India.

Anuj Chauhan (A)

Indian Veterinary Research Institute, Bareilly, India. dranujivri@gmail.com.

Argana Ajay (A)

Indian Veterinary Research Institute, Bareilly, India.

Babu Lal Saini (BL)

Indian Veterinary Research Institute, Bareilly, India.

Subodh Kumar (S)

Indian Veterinary Research Institute, Bareilly, India.

Amit Kumar (A)

Indian Veterinary Research Institute, Bareilly, India.

Bharat Bhushan (B)

Indian Veterinary Research Institute, Bareilly, India.

Gyanendra Kumar Gaur (GK)

Indian Veterinary Research Institute, Bareilly, India.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH