Density-habitat relationships of white-tailed deer (

Odocoileus virginianus non‐invasive genetics population density spatial capture‐recapture white‐tailed deer wildlife ecology

Journal

Ecology and evolution
ISSN: 2045-7758
Titre abrégé: Ecol Evol
Pays: England
ID NLM: 101566408

Informations de publication

Date de publication:
Jan 2023
Historique:
received: 18 01 2022
revised: 28 11 2022
accepted: 19 12 2022
entrez: 16 1 2023
pubmed: 17 1 2023
medline: 17 1 2023
Statut: epublish

Résumé

In heterogeneous landscapes, resource selection constitutes a crucial link between landscape and population-level processes such as density. We conducted a non-invasive genetic study of white-tailed deer in southern Finland in 2016 and 2017 using fecal DNA samples to understand factors influencing white-tailed deer density and space use in late summer prior to the hunting season. We estimated deer density as a function of landcover types using a spatial capture-recapture (SCR) model with individual identities established using microsatellite markers. The study revealed second-order habitat selection with highest deer densities in fields and mixed forest, and third-order habitat selection (detection probability) for transitional woodlands (clear-cuts) and closeness to fields. Including landscape heterogeneity improved model fit and increased inferred total density compared with models assuming a homogenous landscape. Our findings underline the importance of including habitat covariates when estimating density and exemplifies that resource selection can be studied using non-invasive methods.

Identifiants

pubmed: 36644703
doi: 10.1002/ece3.9711
pii: ECE39711
pmc: PMC9831969
doi:

Banques de données

Dryad
['10.5061/dryad.v15dv420s']

Types de publication

Journal Article

Langues

eng

Pagination

e9711

Informations de copyright

© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Déclaration de conflit d'intérêts

The authors declare they have no conflicting interests.

Références

J Wildl Manage. 2016 Feb;80(2):235-244
pubmed: 29887642
Oecologia. 2022 Jan;198(1):139-151
pubmed: 34859281
Ecol Appl. 2016 Jun;26(4):1125-35
pubmed: 27509753
Ecology. 2013 Feb;94(2):287-94
pubmed: 23691647
Mol Ecol. 2001 Jan;10(1):249-56
pubmed: 11251803
PLoS One. 2020 Feb 19;15(2):e0228374
pubmed: 32074110
Mol Ecol. 2007 Mar;16(5):1099-106
pubmed: 17305863
Oecologia. 2012 Jan;168(1):231-43
pubmed: 21766188
BMC Ecol. 2017 Dec 19;17(1):44
pubmed: 29258497
PLoS One. 2012;7(9):e43482
pubmed: 23028456
Mol Ecol Resour. 2008 Jan;8(1):103-6
pubmed: 21585727
Ecol Evol. 2021 Sep 28;11(20):14312-14326
pubmed: 34707857
Am J Primatol. 2018 Aug;80(8):e22898
pubmed: 30024040
BMC Evol Biol. 2014 Mar 28;14:64
pubmed: 24678616
PLoS One. 2014 Feb 05;9(2):e88025
pubmed: 24505361
Nucleic Acids Res. 1996 Aug 15;24(16):3189-94
pubmed: 8774899

Auteurs

Jenni Poutanen (J)

Department of Biology University Hill, University of Turku Turku Finland.
Natural Resources Institute Finland Turku Finland.

Angela K Fuller (AK)

Department of Natural Resources and the Environment, U.S. Geological Survey, New York Cooperative Fish and Wildlife Research Unit Cornell University Ithaca New York USA.

Jyrki Pusenius (J)

Natural Resources Institute Finland Joensuu Finland.

J Andrew Royle (JA)

U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA.

Mikael Wikström (M)

Finnish Wildlife Agency Helsinki Finland.

Jon E Brommer (JE)

Department of Biology University Hill, University of Turku Turku Finland.
NOVIA University of Applied Sciences Ekenäs Finland.

Classifications MeSH