Carbon for soils, not soils for carbon.
climate change mitigation
food security
soil carbon sequestration
soil multifunctionality
trade-off
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
07
10
2022
accepted:
17
11
2022
medline:
6
4
2023
pubmed:
17
1
2023
entrez:
16
1
2023
Statut:
ppublish
Résumé
The role of soil organic carbon (SOC) sequestration as a 'win-win' solution to both climate change and food insecurity receives an increasing promotion. The opportunity may be too good to be missed! Yet the tremendous complexity of the two issues at stake calls for a detailed and nuanced examination of any potential solution, no matter how appealing. Here, we critically re-examine the benefits of global SOC sequestration strategies on both climate change mitigation and food production. While estimated contributions of SOC sequestration to climate change vary, almost none take SOC saturation into account. Here, we show that including saturation in estimations decreases any potential contribution of SOC sequestration to climate change mitigation by 53%-81% towards 2100. In addition, reviewing more than 21 meta-analyses, we found that observed yield effects of increasing SOC are inconsistent, ranging from negative to neutral to positive. We find that the promise of a win-win outcome is confirmed only when specific land management practices are applied under specific conditions. Therefore, we argue that the existing knowledge base does not justify the current trend to set global agendas focusing first and foremost on SOC sequestration. Away from climate-smart soils, we need a shift towards soil-smart agriculture, adaptative and adapted to each local context, and where multiple soil functions are quantified concurrently. Only such comprehensive assessments will allow synergies for land sustainability to be maximised and agronomic requirements for food security to be fulfilled. This implies moving away from global targets for SOC in agricultural soils. SOC sequestration may occur along this pathway and contribute to climate change mitigation and should be regarded as a co-benefit.
Substances chimiques
Carbon
7440-44-0
Soil
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2384-2398Subventions
Organisme : Wageningen University
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Références
Alvarez, R., Steinbach, H. S., & De Paepe, J. L. (2017). Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil and Tillage Research, 170, 53-65. doi:10.1016/j.still.2017.03.005
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., & Chabbi, A. (2020). Towards a global-scale soil climate mitigation strategy. Nature Communications, 11(1), 1. Scopus. https://doi.org/10.1038/s41467-020-18887-7
Amundson, R., & Biardeau, L. (2018). Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences of the United States of America, 115(46), 11652-11656. https://doi.org/10.1073/pnas.1815901115
Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., Schlesinger, W. H., Shaw, M. R., Smith, P., Weber, C., & Field, C. B. (2019). Natural climate solutions are not enough. Science, 363(6430), 933-934. https://doi.org/10.1126/science.aaw2741
Angers, D. A., Arrouays, D., Saby, N. P. A., & Walter, C. (2011). Estimating and mapping the carbon saturation deficit of French agricultural topsoils. Soil Use and Management, 27(4), 448-452. https://doi.org/10.1111/j.1475-2743.2011.00366.x
Baveye, P. C., Berthelin, J., Tessier, D., & Lemaire, G. (2018). The “4 per 1000” initiative: A credibility issue for the soil science community? Geoderma, 309, 118-123. https://doi.org/10.1016/j.geoderma.2017.05.005
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391-398. https://doi.org/10.1038/s41893-020-0491-z
Bradford, M. A., Carey, C. J., Atwood, L., Bossio, D., Fenichel, E. P., Gennet, S., Fargione, J., Fisher, J. R. B., Fuller, E., Kane, D. A., Lehmann, J., Oldfield, E. E., Ordway, E. M., Rudek, J., Sanderman, J., & Wood, S. A. (2019). Soil carbon science for policy and practice. Nature Sustainability, 2(12), 1070-1072. https://doi.org/10.1038/s41893-019-0431-y
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., & Crowther, T. W. (2016). Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6(8), 751-758. https://doi.org/10.1038/nclimate3071
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality-A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., & Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal, 53(3), 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x
Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don, A., SanClements, M., Schipper, L., Six, J., Smith, P., & Rumpel, C. (2017). Aligning agriculture and climate policy. Nature Climate Change, 7, 307-309. https://doi.org/10.1038/nclimate3286
Chen, J., Sun, X., Zheng, J., Zhang, X., Liu, X., Bian, R., Li, L., Cheng, K., Zheng, J., & Pan, G. (2018). Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biology and Fertility of Soils, 54(2), 175-188. https://doi.org/10.1007/s00374-017-1253-6
Chenu, C., Angers, D. A., Barre, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41-52. https://doi.org/10.1016/j.still.2018.04.011
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. Å. M., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates-Synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392-3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x
Cooper, J., Baranski, M., Stewart, G., Nobel-de Lange, M., Bàrberi, P., Fließbach, A., Peigné, J., Berner, A., Brock, C., Casagrande, M., Crowley, O., David, C., De Vliegher, A., Döring, T. F., Dupont, A., Entz, M., Grosse, M., Haase, T., Halde, C., … Mäder, P. (2016). Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agronomy for Sustainable Development, 36(1), 22. https://doi.org/10.1007/s13593-016-0354-1
Dawe, D., Dobermann, A., Ladha, J. K., Yadav, R. L., Bao, L., Gupta, R. K., Lal, P., Panaullah, G., Sariam, O., Singh, Y., Swarup, A., & Zhen, Q.-X. (2003). Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crops Research, 83(2), 191-213.
Du, Y., Cui, B., Zhang, Q., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena, 193, 104617. https://doi.org/10.1016/j.catena.2020.104617
Feller, C., & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79(1-4), 69-116. https://doi.org/10.1016/S0016-7061(97)00039-6
Food and Agriculture Organisation of the United Nations (FAO). (2017). Soil organic carbon: The hidden potential. https://www.fao.org/3/I6937EN/i6937en.pdf
Food and Agriculture Organisation of the United Nations (FAO). (2019). Recarbonization of global soils-A dynamic response to offset global emissions. http://www.fao.org/3/i7235en/I7235EN.pdf
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., … Zeng, J. (2022). Global carbon budget 2021. Earth System Science Data, 14(4), 1917-2005. https://doi.org/10.5194/essd-14-1917-2022
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., Garcia, W. d. O., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J., Dominguez, M. d. M. Z., & Minx, J. C. (2018). Negative emissions-Part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002. https://doi.org/10.1088/1748-9326/aabf9f
Giller, K. E. (2020). The food security conundrum of sub-Saharan Africa. Global Food Security, 26, 100431. https://doi.org/10.1016/j.gfs.2020.100431
Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., & Vanlauwe, B. (2015). Beyond conservation agriculture. Frontiers in Plant Science, 6, 14.
Giller, K. E., Delaune, T., Silva, J. V., van Wijk, M., Hammond, J., Descheemaeker, K., van de Ven, G., Schut, A. G. T., Taulya, G., Chikowo, R., & Andersson, J. A. (2021). Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options? Food Security, 13, 1431-1454. https://doi.org/10.1007/s12571-021-01209-0
Giller, K. E., Leeuwis, C., Andersson, J. A., Andriesse, W., Brouwer, A., Frost, P., Hebinck, P., Heitkönig, I., van Ittersum, M. K., Koning, N., Ruben, R., Slingerland, M., Udo, H., Veldkamp, T., van de Vijver, C., van Wijk, M. T., & Windmeijer, P. (2008). Competing claims on natural resources: What role for science? Ecology and Society, 13(2), 34. https://www.jstor.org/stable/26267992
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645-11650. https://doi.org/10.1073/pnas.1710465114
Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J.-P., Cardinael, R., Chen, S., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., … Zhou, F. (2021). Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology, 27(2), 237-256. https://doi.org/10.1111/gcb.15342
Han, X., Xu, C., Dungait, J. A. J., Bol, R., Wang, X., Wu, W., & Meng, F. (2018). Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences, 15(7), 1933-1946. https://doi.org/10.5194/bg-15-1933-2018
Hijbeek, R., van Ittersum, M. K., ten Berge, H. & Whitmore, A. P. (2018). Evidence review indicates a re-think on the impact of organic inputs and soil organic matter on crop yield. Paper presented to the International Fertiliser Society at a Conference in Cambridge, UK, 7th December 2018. Proceeding 826. International Fertiliser Society.
Hijbeek, R., van Ittersum, M. K., ten Berge, H. F. M., Gort, G., Spiegel, H., & Whitmore, A. P. (2017). Do organic inputs matter-A meta-analysis of additional yield effects for arable crops in Europe. Plant and Soil, 411(1-2), 293-303. https://doi.org/10.1007/s11104-016-3031-x
Hoyle, F. C., O'Leary, R. A., & Murphy, D. V. (2016). Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems. Scientific Reports, 6(1), 31468. https://doi.org/10.1038/srep31468
IPCC. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, …, J. Malley (Eds.)]. Cambridge University Press, 896 pp. https://doi.org/10.1017/9781009157988
IPCC. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.)]. Cambridge University Press, in press. https://doi.org/10.1017/9781009157896
IPCC. (2022). Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate hange [P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.)]. Cambridge University Press. https://doi.org/10.1017/9781009157926
Islam, M. U., Guo, Z., Jiang, F., & Peng, X. (2022). Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crops Research, 279, 108447. https://doi.org/10.1016/j.fcr.2022.108447
Janzen, H. H. (2006). The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry, 38(3), 419-424. https://doi.org/10.1016/j.soilbio.2005.10.008
Janzen, H. H., van Groenigen, K. J., Powlson, D. S., Schwinghamer, T., & van Groenigen, J. W. (2022). Photosynthetic limits on carbon sequestration in croplands. Geoderma, 416, 115810. https://doi.org/10.1016/j.geoderma.2022.115810
Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd
Johnston, A. E., Poulton, P. R., & Coleman, K. (2009). Chapter 1 soil organic matter. In Advances in agronomy (Vol. 101, pp. 1-57). Elsevier. https://doi.org/10.1016/S0065-2113(08)00801-8
Kirkels, F. M. S. A., Cammeraat, L. H., & Kuhn, N. J. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes-A review of different concepts. Geomorphology, 226, 94-105. https://doi.org/10.1016/j.geomorph.2014.07.023
Kirschbaum, M. U. F., Moinet, G. Y. K., Hedley, C. B., Beare, M. H., & McNally, S. R. (2020). A conceptual model of carbon stabilisation based on patterns observed in different soils. Soil Biology and Biochemistry, 141, 107683. https://doi.org/10.1016/j.soilbio.2019.107683
Knotters, M., Teuling, K., Reijneveld, A., Lesschen, J. P., & Kuikman, P. (2022). Changes in organic matter contents and carbon stocks in Dutch soils, 1998-2018. Geoderma, 414, 115751. https://doi.org/10.1016/j.geoderma.2022.115751
Kopittke, P. M., Berhe, A. A., Carrillo, Y., Cavagnaro, T. R., Chen, D., Chen, Q.-L., Román Dobarco, M., Dijkstra, F. A., Field, D. J., Grundy, M. J., He, J.-Z., Hoyle, F. C., Kögel-Knabner, I., Lam, S. K., Marschner, P., Martinez, C., McBratney, A. B., McDonald-Madden, E., Menzies, N. W., … Minasny, B. (2022). Ensuring planetary survival: The centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 52, 1-17. https://doi.org/10.1080/10643389.2021.2024484
Kuyah, S., Whitney, C. W., Jonsson, M., Sileshi, G. W., Öborn, I., Muthuri, C. W., & Luedeling, E. (2019). Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development, 39(5), 47. https://doi.org/10.1007/s13593-019-0589-8
Lal, R. (2001). World cropland soils as a source or sink for atmospheric carbon. In Advances in agronomy (Vol. 71, pp. 145-191). Academic Press. https://doi.org/10.1016/S0065-2113(01)71014-0
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623-1627. https://doi.org/10.1126/science.1097396
Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24(8), 3285-3301. https://doi.org/10.1111/gcb.14054
Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 1834. Scopus. https://doi.org/10.1098/rstb.2021.0084
Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., McBratney, A. B., Sá, J. C. M., Schneider, J., Zinn, Y. L., Skorupa, A. L. A., Zhang, H.-L., Minasny, B., Srinivasrao, C., & Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6), 145A-152A. https://doi.org/10.2489/jswc.73.6.145A
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68. https://doi.org/10.1038/nature16069
Li, P., Li, Y., Xu, L., Zhang, H., Shen, X., Xu, H., Jiao, J., Li, H., & Hu, F. (2021). Crop yield-soil quality balance in double cropping in China's upland by organic amendments: A meta-analysis. Geoderma, 403, 115197. https://doi.org/10.1016/j.geoderma.2021.115197
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 17105. https://doi.org/10.1038/nmicrobiol.2017.105
Loos, J., Abson, D. J., Chappell, M. J., Hanspach, J., Mikulcak, F., Tichit, M., & Fischer, J. (2014). Putting meaning back into “sustainable intensification”. Frontiers in Ecology and the Environment, 12(6), 356-361. https://doi.org/10.1890/130157
Lugato, E., Leip, A., & Jones, A. (2018). Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nature Climate Change, 8(3), 3-223. https://doi.org/10.1038/s41558-018-0087-z
Luo, G., Li, L., Friman, V.-P., Guo, J., Guo, S., Shen, Q., & Ling, N. (2018). Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 124, 105-115. https://doi.org/10.1016/j.soilbio.2018.06.002
Mayer, A., Hausfather, Z., Jones, A. D., & Silver, W. L. (2018). The potential of agricultural land management to contribute to lower global surface temperatures. Science Advances, 4(8), eaaq0932. https://doi.org/10.1126/sciadv.aaq0932
McNally, S. R., Beare, M. H., Curtin, D., Meenken, E. D., Kelliher, F. M., Pereira, R. C., Shen, Q., & Baldock, J. (2017). Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Global Change Biology, 23(11), 4544-4555. https://doi.org/10.1111/gcb.13720
Miller, A. J., Amundson, R., Burke, I. C., & Yonker, C. (2004). The effect of climate and cultivation on soil organic C and N. Biogeochemistry, 67(1), 57-72. https://doi.org/10.1023/B:BIOG.0000015302.16640.a5
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86. https://doi.org/10.1016/j.geoderma.2017.01.002
Moinet, G. Y. K., Cieraad, E., Hunt, J. E., Fraser, A., Turnbull, M. H., & Whitehead, D. (2016). Soil heterotrophic respiration is insensitive to changes in soil water content but related to microbial access to organic matter. Geoderma, 274, 68-78. Scopus. https://doi.org/10.1016/j.geoderma.2016.03.027
Moinet, G. Y. K., Dhami, M. K., Hunt, J. E., Podolyan, A., Liáng, L. L., Schipper, L. A., Whitehead, D., Nuñez, J., Nascente, A., & Millard, P. (2021). Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Global Change Biology, 27(23), 6217-6231. https://doi.org/10.1111/gcb.15878
Moinet, G. Y. K., Hunt, J. E., Kirschbaum, M. U. F., Morcom, C. P., Midwood, A. J., & Millard, P. (2018). The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biology and Biochemistry, 116, 333-339. Scopus. https://doi.org/10.1016/j.soilbio.2017.10.031
Moinet, G. Y. K., Moinet, M., Hunt, J. E., Rumpel, C., Chabbi, A., & Millard, P. (2020). Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Science of the Total Environment, 704. Scopus, 135460. https://doi.org/10.1016/j.scitotenv.2019.135460
Oelofse, M., Markussen, B., Knudsen, L., Schelde, K., Olesen, J. E., Jensen, L. S., & Bruun, S. (2015). Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. European Journal of Agronomy, 66, 62-73. https://doi.org/10.1016/j.eja.2015.02.009
Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. The Soil, 5(1), 15-32. https://doi.org/10.5194/soil-5-15-2019
Pan, G., Smith, P., & Pan, W. (2009). The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129(1), 344-348. https://doi.org/10.1016/j.agee.2008.10.008
Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M., & Woomer, P. L. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 13(s4), 230-244. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57. https://doi.org/10.1038/nature17174
Poulton, P., Johnston, J., Macdonald, A., White, R., & Powlson, D. (2018). Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted research, United Kingdom. Global Change Biology, 24(6), 2563-2584. https://doi.org/10.1111/gcb.14066
Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science, 62(1), 42-55. https://doi.org/10.1111/j.1365-2389.2010.01342.x
Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362(6417), eaav0294. https://doi.org/10.1126/science.aav0294
Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5-24. https://doi.org/10.3763/ijas.2010.0583
Ravensbergen, A. P. P., Chamberlin, J., Craufurd, P., Shehu, B. M., & Hijbeek, R. (2021). Adapting the QUEFTS model to predict attainable yields when training data are characterized by imperfect management. Field Crops Research, 266, 108126. https://doi.org/10.1016/j.fcr.2021.108126
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.-S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.-F., Whitehead, D., & Wollenberg, E. (2019). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 49, 350-360. https://doi.org/10.1007/s13280-019-01165-2
Rusinamhodzi, L., Corbeels, M., Zingore, S., Nyamangara, J., & Giller, K. E. (2013). Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe. Field Crops Research, 147, 40-53. https://doi.org/10.1016/j.fcr.2013.03.014
Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9575-9580. https://doi.org/10.1073/pnas.1706103114
Schjønning, P., Jensen, J. L., Bruun, S., Jensen, L. S., Christensen, B. T., Munkholm, L. J., Oelofse, M., Baby, S., & Knudsen, L. (2018). The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis. In Advances in agronomy (Vol. 150, pp. 35-79). Elsevier. https://doi.org/10.1016/bs.agron.2018.03.001
Schröder, J. (2005). Revisiting the agronomic benefits of manure: A correct assessment and exploitation of its fertilizer value spares the environment. Bioresource Technology, 96(2), 253-261. https://doi.org/10.1016/j.biortech.2004.05.015
Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O'Donoghue, C., & O'HUallachain, D. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy, 38, 45-58. https://doi.org/10.1016/j.envsci.2013.10.002
Shetty, R., Vidya, C. S.-N., Prakash, N. B., Lux, A., & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. The Science of the Total Environment, 765, 142744. https://doi.org/10.1016/j.scitotenv.2020.142744
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789
Smith, P. (2012). Soils and climate change. Current Opinion in Environmental Sustainability, 4(5), 539-544. https://doi.org/10.1016/j.cosust.2012.06.005
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315-1324. https://doi.org/10.1111/gcb.13178
Smith, P., Adams, J., Beerling, D. J., Beringer, T., Calvin, K. V., Fuss, S., Griscom, B., Hagemann, N., Kammann, C., Kraxner, F., Minx, J. C., Popp, A., Renforth, P., Vicente Vicente, J. L., & Keesstra, S. (2019). Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annual Review of Environment and Resources, 44(1), 255-286. https://doi.org/10.1146/annurev-environ-101718-033129
Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K., … Pugh, T. A. M. (2016). Global change pressures on soils from land use and management. Global Change Biology, 22(3), 1008-1028. https://doi.org/10.1111/gcb.13068
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 789-813. https://doi.org/10.1098/rstb.2007.2184
Sommer, R., & Bossio, D. (2014). Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management, 144, 83-87. https://doi.org/10.1016/j.jenvman.2014.05.017
Soussana, J.-F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Richards, M., Wollenberg, E. (Lini), Chotte, J.-L., Torquebiau, E., Ciais, P., Smith, P., & Lal, R. (2019). Matching policy and science: Rationale for the ‘4 per 1000-Soils for food security and climate’ initiative. Soil and Tillage Research, 188, 3-15. https://doi.org/10.1016/j.still.2017.12.002
Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2007). Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry, 86(1), 19-31. https://doi.org/10.1007/s10533-007-9140-0
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., & Jackson, R. B. (2021). A trade-off between plant and soil carbon storage under elevated CO2. Nature, 591(7851), 7851-7603. https://doi.org/10.1038/s41586-021-03306-8
Thapa, R., Mirsky, S. B., & Tully, K. L. (2018). Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. Journal of Environmental Quality, 47(6), 1400-1411. https://doi.org/10.2134/jeq2018.03.0107
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., … Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586, 7828. https://doi.org/10.1038/s41586-020-2780-0
van der Pol, L. K., Robertson, A., Schipanski, M., Calderon, F. J., Wallenstein, M. D., & Cotrufo, M. F. (2022). Addressing the soil carbon dilemma: Legumes in intensified rotations regenerate soil carbon while maintaining yields in semi-arid dryland wheat farms. Agriculture, Ecosystems & Environment, 330, 107906. https://doi.org/10.1016/j.agee.2022.107906
van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E., Reich, P. B., Schuur, E. A. G., & Hungate, B. A. (2018). Predicting soil carbon loss with warming. Nature, 554(7693), E4-E5. https://doi.org/10.1038/nature25745
van Ittersum, M. K., & Rabbinge, R. (1997). Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research, 52(3), 197-208. https://doi.org/10.1016/S0378-4290(97)00037-3
van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M., van Ruijven, B. J., & Koelbl, B. (2013). The role of negative CO2 emissions for reaching 2°C-Insights from integrated assessment modelling. Climatic Change, 118(1), 15-27. https://doi.org/10.1007/s10584-012-0680-5
Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 339(1), 35-50. https://doi.org/10.1007/s11104-010-0462-7
Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J., & Creamer, R. E. (2021). Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. European Journal of Soil Science, 72(4), 1624-1639. https://doi.org/10.1111/ejss.13019
Watts, C. W., & Dexter, A. R. (1997). The influence of organic matter in reducing the destabilization of soil by simulated tillage. Soil and Tillage Research, 42(4), 253-275. https://doi.org/10.1016/S0167-1987(97)00009-3
Wei, W., Yan, Y., Cao, J., Christie, P., Zhang, F., & Fan, M. (2016). Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agriculture, Ecosystems & Environment, 225, 86-92. https://doi.org/10.1016/j.agee.2016.04.004
Wendt, J. W., & Hauser, S. (2013). An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. European Journal of Soil Science, 64(1), 58-65. https://doi.org/10.1111/ejss.12002
Zavattaro, L., Bechini, L., Grignani, C., van Evert, F. K., Mallast, J., Spiegel, H., Sandén, T., Pecio, A., Giráldez Cervera, J. V., Guzmán, G., Vanderlinden, K., D'Hose, T., Ruysschaert, G., & ten Berge, H. F. M. (2017). Agronomic effects of bovine manure: A review of long-term European field experiments. European Journal of Agronomy, 90, 127-138. https://doi.org/10.1016/j.eja.2017.07.010
Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7(1), 15554. https://doi.org/10.1038/s41598-017-15794-8
Zwetsloot, M. J., van Leeuwen, J., Hemerik, L., Martens, H., Josa, I. S., de Broek, M. V., Debeljak, M., Rutgers, M., Sandén, T., Wall, D. P., Jones, A., & Creamer, R. E. (2021). Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. European Journal of Soil Science, 72(4), 1640-1654. https://doi.org/10.1111/ejss.13051