Contractile properties are less affected at long than short muscle length after eccentric exercise.
Downhill walking
Exercise-induced muscle damage
Low-frequency fatigue
Muscle–tendon stiffness
Shear-wave elastography
Ultrafast ultrasound imaging
Journal
European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
21
03
2022
accepted:
15
09
2022
medline:
24
4
2023
pubmed:
17
1
2023
entrez:
16
1
2023
Statut:
ppublish
Résumé
The aim of the present study was to investigate whether the electrically evoked muscle responses are differently affected over time by the knee joint angle after an exercise-induced muscle damage (EIMD). We hypothesized that low-frequency-evoked responses would be less affected at long than short muscle length, and that mechanisms located within the muscle and tendinous tissues would be involved. Fifteen males performed 45 min loaded downhill walking (DW) exercise. Maximal voluntary contraction torque (MVC), optimal angle for torque production, voluntary activation level (VAL), twitch, doublet at 10 and 100 Hz (Db10 and Db100, respectively), rate of torque development (RTD), post-activation potentiation (PAP), muscle shear elastic modulus (µ) and aponeurosis stiffness were assessed before, after, and 4, 24, 48, 72 and 168 h after the exercise at a knee angle of 40°, 90° and 120° (0°: full extension). MVC, VAL and Db100 were similarly decreased across joint angles after the DW and optimal angle was not affected. Twitch, Db10, Db10/Db100, PAP and RTD were less affected and muscle µ more increased at long than short muscle lengths (p < 0.05), especially during the first 24 h after the DW exercise. Low-frequency-evoked responses were more preserved at long than short muscle length the first 24 h after the DW exercise, suggesting that joint angle should be taken into account to assess muscular alterations after EIMD. This length-dependence could be associated to the higher sensitivity to Ca
Identifiants
pubmed: 36645479
doi: 10.1007/s00421-023-05134-2
pii: 10.1007/s00421-023-05134-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1101-1114Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. https://doi.org/10.1152/physrev.00015.2007
doi: 10.1152/physrev.00015.2007
pubmed: 18195089
Balnave CD, Allen DG (1996) The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J Physiol 492:705–713. https://doi.org/10.1113/jphysiol.1996.sp021339
doi: 10.1113/jphysiol.1996.sp021339
pubmed: 8734983
pmcid: 1158893
Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51(4):396–409. https://doi.org/10.1109/tuffc.2004.1295425
doi: 10.1109/tuffc.2004.1295425
pubmed: 15139541
Brockett CL, Morgan DL, Proske U (2001) Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 33(5):783–790
doi: 10.1097/00005768-200105000-00017
pubmed: 11323549
Byrne C, Eston RG, Edwards RH (2001) Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports 11(3):134–140
doi: 10.1046/j.1524-4725.2001.110302.x
pubmed: 11374426
Chalchat E, Gennisson JL, Peñailillo L, Oger M, Malgoyre A, Charlot K, Bourrilhon C, Siracusa J, Garcia-Vicencio S (2020) Changes in the viscoelastic properties of the Vastus lateralis muscle with fatigue. Front Physiol 11:307. https://doi.org/10.3389/fphys.2020.00307
doi: 10.3389/fphys.2020.00307
pubmed: 32390859
pmcid: 7194212
Child RB, Saxton JM, Donnelly AE (1998) Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and angle-specific force production in humans. J Sports Sci 16(4):301–308. https://doi.org/10.1080/02640419808559358
doi: 10.1080/02640419808559358
pubmed: 9663954
Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81(11 Suppl):S52-69. https://doi.org/10.1097/01.PHM.0000029772.45258.43
doi: 10.1097/01.PHM.0000029772.45258.43
pubmed: 12409811
Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272(3):769–778. https://doi.org/10.1113/jphysiol.1977.sp012072
doi: 10.1113/jphysiol.1977.sp012072
pubmed: 592214
pmcid: 1353654
Enoka SDG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648. https://doi.org/10.1152/jappl.1992.72.5.1631
doi: 10.1152/jappl.1992.72.5.1631
pubmed: 1601767
Heales LJ, Badya R, Ziegenfuss B, Hug F, Coombes JS, van den Hoorn W, Tucker K, Coombes BK (2018) Shear-wave velocity of the patellar tendon and quadriceps muscle is increased immediately after maximal eccentric exercise. Eur J Appl Physiol 118(8):1715–1724. https://doi.org/10.1007/s00421-018-3903-2
doi: 10.1007/s00421-018-3903-2
pubmed: 29855790
Hoffman BW, Cresswell AG, Carroll TJ, Lichtwark GA (2016) Protection from muscle damage in the absence of changes in muscle mechanical behavior. Med Sci Sports Exerc 48(8):1495–1505. https://doi.org/10.1249/MSS.0000000000000920
doi: 10.1249/MSS.0000000000000920
pubmed: 27433958
Howell JN, Chleboun G, Conatser R (1993) Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J Physiol 464:183–196. https://doi.org/10.1113/jphysiol.1993.sp019629
doi: 10.1113/jphysiol.1993.sp019629
pubmed: 8229798
pmcid: 1175380
Ishikawa M, Dousset E, Avela J, Kyrolainen H, Kallio J, Linnamo V, Kuitunen S, Nicol C, Komi PV (2006) Changes in the soleus muscle architecture after exhausting stretch-shortening cycle exercise in humans. Eur J Appl Physiol 97(3):298–306. https://doi.org/10.1007/s00421-006-0180-2
doi: 10.1007/s00421-006-0180-2
pubmed: 16770465
Jacobs R, van Ingen Schenau GJ (1992) Control of an external force in leg extensions in humans. J Physiol 457:611–626. https://doi.org/10.1113/jphysiol.1992.sp019397
doi: 10.1113/jphysiol.1992.sp019397
pubmed: 1297846
pmcid: 1175750
Lacourpaille L, Nordez A, Hug F, Couturier A, Dibie C, Guilhem G (2014) Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography. Acta Physiol 211(1):135–146. https://doi.org/10.1111/apha.12272
doi: 10.1111/apha.12272
Lacourpaille L, Nordez A, Hug F, Doguet V, Andrade R, Guilhem G (2017) Early detection of exercise-induced muscle damage using elastography. Eur J Appl Physiol 117(10):2047–2056. https://doi.org/10.1007/s00421-017-3695-9
doi: 10.1007/s00421-017-3695-9
pubmed: 28780603
MacIntosh BR (2010) Cellular and whole muscle studies of activity dependent potentiation. Adv Exp Med Biol 682:315–342. https://doi.org/10.1007/978-1-4419-6366-6_18
doi: 10.1007/978-1-4419-6366-6_18
pubmed: 20824534
MacIntosh BR (2017) Recent developments in understanding the length dependence of contractile response of skeletal muscle. Eur J Appl Physiol 117(6):1059–1071. https://doi.org/10.1007/s00421-017-3591-3
doi: 10.1007/s00421-017-3591-3
pubmed: 28349260
Maeo S, Saito A, Otsuka S, Shan X, Kanehisa H, Kawakami Y (2018) Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand J Med Sci Sports 28(1):95–106. https://doi.org/10.1111/sms.12880
doi: 10.1111/sms.12880
pubmed: 28314055
Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116. https://doi.org/10.1007/s00421-016-3346-6
doi: 10.1007/s00421-016-3346-6
pubmed: 26941023
pmcid: 4875063
Merton PA (1954) Voluntary strength and fatigue. J Physiol 123(3):553–564. https://doi.org/10.1113/jphysiol.1954.sp005070
doi: 10.1113/jphysiol.1954.sp005070
pubmed: 13152698
pmcid: 1366225
Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111(10):2489–2500. https://doi.org/10.1007/s00421-011-1996-y
doi: 10.1007/s00421-011-1996-y
pubmed: 21590274
Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol 87(6):2007–2015. https://doi.org/10.1152/jappl.1999.87.6.2007
doi: 10.1152/jappl.1999.87.6.2007
pubmed: 10601142
Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97
pubmed: 22876722
Philippou A, Maridaki M, Bogdanis GC (2003) Angle-specific impairment of elbow flexors strength after isometric exercise at long muscle length. J Sports Sci 21(10):859–865. https://doi.org/10.1080/0264041031000140356
doi: 10.1080/0264041031000140356
pubmed: 14620029
Pincheira PA, Hoffman BW, Cresswell AG, Carroll TJ, Brown NAT, Lichtwark GA (2018) The repeated bout effect can occur without mechanical and neuromuscular changes after a bout of eccentric exercise. Scand J Med Sci Sports 28(10):2123–2134. https://doi.org/10.1111/sms.13222
doi: 10.1111/sms.13222
pubmed: 29790207
Prasartwuth O, Allen TJ, Butler JE, Gandevia SC, Taylor JL (2006) Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. J Physiol 571(Pt 1):243–252. https://doi.org/10.1113/jphysiol.2005.101600
doi: 10.1113/jphysiol.2005.101600
pubmed: 16357013
Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–345. https://doi.org/10.1111/j.1469-7793.2001.00333.x
doi: 10.1111/j.1469-7793.2001.00333.x
pubmed: 11731568
pmcid: 2278966
Rassier DE, MacIntosh BR, Herzog W (1999) Length dependence of active force production in skeletal muscle. J Appl Physiol 86(5):1445–1457. https://doi.org/10.1152/jappl.1999.86.5.1445
doi: 10.1152/jappl.1999.86.5.1445
pubmed: 10233103
Roszek B, Baan GC, Huijing PA (1994) Decreasing stimulation frequency-dependent length-force characteristics of rat muscle. J Appl Physiol 77(5):2115–2124. https://doi.org/10.1152/jappl.1994.77.5.2115
doi: 10.1152/jappl.1994.77.5.2115
pubmed: 7868423
Saxton JM, Donnelly AE (1996) Length-specific impairment of skeletal muscle contractile function after eccentric muscle actions in man. Clin Sci (lond) 90(2):119–125. https://doi.org/10.1042/cs0900119
doi: 10.1042/cs0900119
pubmed: 8829881
Schuklenk U (2001) Helsinki declaration revisions. Issues. Med Ethics 9(1):29
Siracusa J, Charlot K, Malgoyre A, Conort S, Tardo-Dino PE, Bourrilhon C, Garcia-Vicencio S (2019) Resting muscle shear modulus measured with ultrasound shear-wave elastography as an alternative tool to assess muscle fatigue in humans. Front Physiol 10:626. https://doi.org/10.3389/fphys.2019.00626
doi: 10.3389/fphys.2019.00626
pubmed: 31178757
pmcid: 6537456
Skurvydas A, Brazaitis M, Kamandulis S, Sipaviciene S (2010) Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related. J Electromyogr Kinesiol off J Int Soc Electrophysiol Kinesiol 20(4):655–660. https://doi.org/10.1016/j.jelekin.2010.02.009
doi: 10.1016/j.jelekin.2010.02.009
Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106(2):701–710. https://doi.org/10.1152/japplphysiol.01051.2007
doi: 10.1152/japplphysiol.01051.2007
pubmed: 18756009
Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27(1):43–59. https://doi.org/10.2165/00007256-199927010-00004
doi: 10.2165/00007256-199927010-00004
pubmed: 10028132
Whitehead NP, Weerakkody NS, Gregory JE, Morgan DL, Proske U (2001) Changes in passive tension of muscle in humans and animals after eccentric exercise. J Physiol 533(Pt 2):593–604. https://doi.org/10.1111/j.1469-7793.2001.0593a.x
doi: 10.1111/j.1469-7793.2001.0593a.x
pubmed: 11389215
pmcid: 2278643
Yu JY, Jeong JG, Lee BH (2015) Evaluation of muscle damage using ultrasound imaging. J Phys Ther Sci 27(2):531–534. https://doi.org/10.1589/jpts.27.531
doi: 10.1589/jpts.27.531
pubmed: 25729209
pmcid: 4339179