Appia: Simpler chromatography analysis and visualization.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2023
Historique:
received: 26 08 2022
accepted: 22 12 2022
entrez: 17 1 2023
pubmed: 18 1 2023
medline: 20 1 2023
Statut: epublish

Résumé

Chromatography is an essential family of assays for molecular biology and chemistry. Typically, only a qualitative assessment of peak height, position, and shape are sufficient to proceed. Additionally, chromatography instrument software is proprietary and often locked to a single computer, making data analysis and sharing difficult. Since each manufacturer reports the data in their own proprietary format, performing analysis of experiments which use multiple instruments or sharing data between labs is also challenging. Here we present Appia, a free, open-source chromatography processing and visualization package focused on making analysis, collaboration, and publication quick and easy.

Identifiants

pubmed: 36649224
doi: 10.1371/journal.pone.0280255
pii: PONE-D-22-23933
pmc: PMC9844859
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0280255

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM138862
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM071338
Pays : United States

Informations de copyright

Copyright: © 2023 Posert, Baconguis. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

North Clin Istanb. 2016 Nov 11;3(2):156-160
pubmed: 28058406
Structure. 2006 Apr;14(4):673-81
pubmed: 16615909
Trends Cogn Sci. 2003 Mar;7(3):134-140
pubmed: 12639695
Elife. 2020 Jul 30;9:
pubmed: 32729833
Nat Protoc. 2014 Nov;9(11):2574-85
pubmed: 25299155
EMBO J. 1996 May 15;15(10):2371-80
pubmed: 8665844

Auteurs

Richard Posert (R)

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States of America.
Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America.

Isabelle Baconguis (I)

Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH