Clinical spectrum and currently available treatment of type I interferonopathy Aicardi-Goutières syndrome.
Aicardi–Goutières syndrome
Immunosuppressive drugs
Interferon-α
Neuroinflammation
Systemic lupus erythematosus
Journal
World journal of pediatrics : WJP
ISSN: 1867-0687
Titre abrégé: World J Pediatr
Pays: Switzerland
ID NLM: 101278599
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
25
04
2022
accepted:
22
12
2022
medline:
13
6
2023
pubmed:
18
1
2023
entrez:
17
1
2023
Statut:
ppublish
Résumé
Aicardi-Goutières syndrome (AGS) is a genetically determined disorder with a variable phenotype. Since the original description of AGS, advances in gene sequencing techniques have resulted in a significant broadening of the phenotypic spectrum associated with AGS genes, and new clinical pictures have emerged beyond the classic presentation. The aim of this review is to provide a comprehensive analysis of the clinical spectrum of AGS and report currently available treatments and new immunosuppressive strategies. Literature reviews and original research articles were collected from databases, including PubMed and ClinicalTrials.gov. Relevant articles about AGS were included. The involvement of the nervous system certainly represents the major cause of mortality and morbidity in AGS patients. However, other clinical manifestations, such as chilblains, hepatosplenomegaly, and hematological disturbances, may lead to the diagnosis and considerably impact the prognosis and overall quality of life of these patients. Therapeutic approaches of AGS are limited to interventions aimed at specific symptoms and the management of multiple comorbidities. However, advances in understanding the pathogenesis of AGS could open new and more effective therapies. The over-activation of innate immunity due to upregulated interferon production plays a critical role in AGS, leading to multi-organ damage with the main involvement of the central nervous system. To date, there is no specific and effective treatment for AGS. New drugs specifically targeting the interferon pathway may bring new hope to AGS patients.
Sections du résumé
BACKGROUND
BACKGROUND
Aicardi-Goutières syndrome (AGS) is a genetically determined disorder with a variable phenotype. Since the original description of AGS, advances in gene sequencing techniques have resulted in a significant broadening of the phenotypic spectrum associated with AGS genes, and new clinical pictures have emerged beyond the classic presentation. The aim of this review is to provide a comprehensive analysis of the clinical spectrum of AGS and report currently available treatments and new immunosuppressive strategies.
DATA SOURCES
METHODS
Literature reviews and original research articles were collected from databases, including PubMed and ClinicalTrials.gov. Relevant articles about AGS were included.
RESULTS
RESULTS
The involvement of the nervous system certainly represents the major cause of mortality and morbidity in AGS patients. However, other clinical manifestations, such as chilblains, hepatosplenomegaly, and hematological disturbances, may lead to the diagnosis and considerably impact the prognosis and overall quality of life of these patients. Therapeutic approaches of AGS are limited to interventions aimed at specific symptoms and the management of multiple comorbidities. However, advances in understanding the pathogenesis of AGS could open new and more effective therapies.
CONCLUSIONS
CONCLUSIONS
The over-activation of innate immunity due to upregulated interferon production plays a critical role in AGS, leading to multi-organ damage with the main involvement of the central nervous system. To date, there is no specific and effective treatment for AGS. New drugs specifically targeting the interferon pathway may bring new hope to AGS patients.
Identifiants
pubmed: 36650407
doi: 10.1007/s12519-022-00679-2
pii: 10.1007/s12519-022-00679-2
pmc: PMC10258176
doi:
Substances chimiques
Interferons
9008-11-1
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
635-643Informations de copyright
© 2023. The Author(s).
Références
Aicardi J, Goutières F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol. 1984;15:49–54.
pubmed: 6712192
doi: 10.1002/ana.410150109
Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GMA, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet Part A. 2015;167A:296–312.
pubmed: 25604658
doi: 10.1002/ajmg.a.36887
Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, El-Daher MT, et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet. 2020;52:1364–72.
pubmed: 33230297
doi: 10.1038/s41588-020-00737-3
Rice GI, Del Toro DY, Jenkinson EM, Forte GMA, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9.
pubmed: 24686847
pmcid: 4004585
doi: 10.1038/ng.2933
McEntagart M, Kamel H, Lebon P, King MD. Aicardi-Goutieres syndrome: an expanding phenotype. Neuropediatrics. 1998;29:163–7.
pubmed: 9706629
doi: 10.1055/s-2007-973555
Blau N, Bonafé L, Krägeloh-Mann I, Thöny B, Kierat L, Häusler M, et al. Cerebrospinal fluid pterins and folates in Aicardi-Goutières syndrome: a new phenotype. Neurology. 2003;61:642–7.
pubmed: 12963755
doi: 10.1212/01.WNL.0000082726.08631.E7
Livingston JH, Crow YJ. Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi-Goutières syndrome and beyond. Neuropediatrics. 2016;47:355–60.
pubmed: 27643693
doi: 10.1055/s-0036-1592307
Crow YJ, Shetty J, Livingston JH. Treatments in Aicardi-Goutières syndrome. Dev Med Child Neurol. 2020;62:42–7.
pubmed: 31175662
doi: 10.1111/dmcn.14268
Crow YJ. Aicardi-Goutières syndrome. 2005 Jun 29 (updated 2016 Nov 22). In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews
Sata M, Yano Y, Yoshiyama Y, Ide T, Kumashiro R, Suzuki H, et al. Mechanisms of thrombocytopenia induced by interferon therapy for chronic hepatitis B. J Gastroenterol. 1997;32:206–10.
pubmed: 9085169
doi: 10.1007/BF02936369
Espinosa M, Arenas MD, Aumente MD, Barril G, Buades JM, Aviles B, et al. Anemia associated with pegylated interferon-α2a and α2b therapy in hemodialysis patients. Clin Nephrol. 2007;67:366–73.
pubmed: 17598372
doi: 10.5414/CNP67366
Gugliotta L, Bagnara GP, Catani L, Gaggioli L, Guarini A, Zauli G, et al. In vivo and in vitro inhibitory effect of α-interferon on megakaryocyte colony growth in essential thrombocythaemia. Br J Hematol. 1989;71:177–81.
doi: 10.1111/j.1365-2141.1989.tb04251.x
Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, et al. Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi-Goutieres syndrome. Brain. 2013;136:245–58.
pubmed: 23365100
doi: 10.1093/brain/aws321
Vanderver A, Prust M, Kadom N, Demarest S, Crow YJ, Helman G, et al. Early-onset Aicardi-Goutières syndrome: magnetic resonance imaging (MRI) pattern recognition. J Child Neurol. 2015;30:1343–8.
pubmed: 25535058
doi: 10.1177/0883073814562252
D’arrigo S, Riva D, Bulgheroni S, Chiapparini L, Lebon P, Rice G, et al. Aicardi-Goutières syndrome: description of a late onset case. Dev Med Child Neurol. 2008;50:631–4.
pubmed: 18754903
doi: 10.1111/j.1469-8749.2008.03033.x
Livingston JH, Lin JP, Dale RC, Gill D, Brogan P, Munnich A, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J Med Genet. 2014;51:76–82.
pubmed: 24262145
doi: 10.1136/jmedgenet-2013-102038
Rice G, Patrick T, Parmar R, Taylor CF, Aeby A, Aicardi J, et al. Clinical and molecular phenotype of Aicardi-Goutières syndrome. Am J Hum Genet. 2007;81:713–25.
pubmed: 17846997
pmcid: 2227922
doi: 10.1086/521373
Piccoli C, Bronner N, Gavazzi F, Dubbs H, De Simone M, De Giorgis V, et al. Late-onset Aicardi-Goutières syndrome: a characterization of presenting clinical features. Pediatr Neurol. 2021;115:1–6.
pubmed: 33307271
doi: 10.1016/j.pediatrneurol.2020.10.012
Tojo K, Sekijima Y, Suzuki T, Suzuki N, Tomita Y, Yoshida K, et al. Dystonia, mental deterioration and dyschromatosis symmetrica hereditaria in a family with ADAR1 mutation. Mov Disord. 2006;21:1510–3.
pubmed: 16817193
doi: 10.1002/mds.21011
Melrose RJ, Tinaz S, Castelo JMB, Courtney MG, Stern CE. Compromised fronto-striatal functioning in HIV: a fMRI investigation of semantic event sequencing. Behav Brain Res. 2008;188:337–47.
pubmed: 18242723
doi: 10.1016/j.bbr.2007.11.021
Crow YJ, Zaki MS, Abdel-Hamid MS, Abdel-Salam G, Boespflug-Tanguy O, Cordeiro NJV, et al. Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics. 2014;45:386–93.
pubmed: 25243380
doi: 10.1055/s-0034-1389161
Ruaud L, Rice GI, Cabrol C, Piard J, Rodero M, van Eyk L, et al. Autosomal-dominant early-onset spastic paraparesis with brain calcification due to IFIH1 gain-of-function. Hum Mutat. 2018;39:1076–80.
pubmed: 29782060
pmcid: 6043383
doi: 10.1002/humu.23554
Li W, Xin B, Yan J, Wu Y, Hu B, Liu L, et al. SAMHD1 gene mutations are associated with cerebral large-artery atherosclerosis. Biomed Res Int. 2015;2015:739586.
pubmed: 26504826
pmcid: 4609382
Xin B, Jones S, Puffenberger EG, Hinze C, Bright A, Tan H, et al. Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc Natl Acad Sci U S A. 2011;108:5372–7.
pubmed: 21402907
pmcid: 3069167
doi: 10.1073/pnas.1014265108
Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41:829–32.
pubmed: 19525956
pmcid: 4154505
doi: 10.1038/ng.373
Wang W, Wang W, He TY, Zou LP, Li WD, Yu ZX, et al. Analysis of clinical characteristics of children with Aicardi-Goutieres syndrome in China. World J Pediatr. 2022;18:490–7.
pubmed: 35551623
pmcid: 9205831
doi: 10.1007/s12519-022-00545-1
Ramantani G, Maillard LG, Bast T, Husain RA, Niggemann P, Kohlhase J, et al. Epilepsy in Aicardi-Goutières syndrome. Eur J Paediatr Neurol. 2014;18:30–7.
pubmed: 24011626
doi: 10.1016/j.ejpn.2013.07.005
De Giorgis V, Varesio C, Viri M, Giordano L, La Piana R, Tonduti D, et al. The epileptology of Aicardi-Goutières syndrome: electroclinical-radiological findings. 2021;86:197–209.
Dale RC, Brilot F, Fagan E, Earl J. Cerebrospinal fluid neopterin in pediatric neurology: a marker of active central nervous system inflammation. Dev Med Child Neurol. 2009;51:317–23.
pubmed: 19191826
doi: 10.1111/j.1469-8749.2008.03225.x
Fuchs D, Weiss G, Reibnegger G, Wachter H. The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit Rev Clin Lab Sci. 1992;29:307–41.
pubmed: 1489521
doi: 10.3109/10408369209114604
Molero-Luis M, Casas-Alba D, Orellana G, Ormazabal A, Sierra C, Oliva C, et al. Cerebrospinal fluid neopterin as a biomarker of neuroinflammatory diseases. Sci Rep. 2020;10:18291.
pubmed: 33106568
pmcid: 7588460
doi: 10.1038/s41598-020-75500-z
Uggetti C, La Piana R, Orcesi S, Egitto MG, Crow YJ, Fazzi E. Aicardi-Goutières syndrome: neuroradiologic findings and follow-up. AJNR Am J Neuroradiol. 2009;30:1971–6.
pubmed: 19628626
pmcid: 7051307
doi: 10.3174/ajnr.A1694
La Piana R, Uggetti C, Roncarolo F, Vanderver A, Olivieri I, Tonduti D, et al. Neuroradiologic patterns and novel imaging findings in Aicardi-Goutières syndrome. Neurology. 2016;86:28–35.
pubmed: 26581299
pmcid: 4731289
doi: 10.1212/WNL.0000000000002228
Oleksy B, Mierzewska H, Tryfon J, Wypchło M, Wasilewska K, Zalewska-Miszkurka Z, et al. Aicardi-Goutières syndrome due to a SAMHD1 mutation presenting with deep white matter cysts. Mol Syndromol. 2022;13:132–8.
pubmed: 35418820
doi: 10.1159/000518941
Abdel-Salam GMH, Abdel-Hamid MS, Mohammad SA, Abdel-Ghafar SF, Soliman DR, El-Bassyouni HT, et al. Aicardi-Goutières syndrome: unusual neuro-radiological manifestations. Metab Brain Dis. 2017;32:679–83.
pubmed: 28332073
doi: 10.1007/s11011-017-9993-4
Abdel-Salam GMH, El-Kamah GY, Rice GI, El-Darouti M, Gornall H, Szynkiewicz M, et al. Chilblains as a diagnostic sign of aicardi-goutières syndrome. Neuropediatrics. 2010;41:18–23.
pubmed: 20571986
doi: 10.1055/s-0030-1255059
Kolivras A, Aeby A, Crow YJ, Rice GI, Sass U, André J. Cutaneous histopathological findings of Aicardi-Goutières syndrome, overlap with chilblain lupus. J Cutan Pathol. 2008;35:774–8.
pubmed: 18422690
doi: 10.1111/j.1600-0560.2007.00900.x
Juern A, Robbins A, Galbraith S, Drolet B. Aicardi-Goutières syndrome: cutaneous, laboratory, and radiologic findings: a case report. Pediatr Dermatol. 2010;27:82–5.
pubmed: 20199418
doi: 10.1111/j.1525-1470.2009.01055.x
Singh S, Taneja N, Bala P, Verma KK, Devarajan LSJ. Aicardi-Goutières syndrome: cold-induced acral blemish is not always cryoglobulinaemic vasculitis or chilblain lupus. Clin Exp Dermatol. 2018;43:488–90.
pubmed: 29341198
doi: 10.1111/ced.13376
Wu D, Fang L, Huang T, Ying S. Case report: Aicardi-Goutières syndrome caused by novel TREX1 variants. Front Pediatr. 2021;9:634281.
pubmed: 33996686
pmcid: 8113616
doi: 10.3389/fped.2021.634281
Yarbrough K, Danko C, Krol A, Zonana J, Leitenberger S. The importance of chilblains as a diagnostic clue for mild Aicardi-Goutières syndrome. Am J Med Genet Part A. 2016;170:3308–12.
pubmed: 27604406
doi: 10.1002/ajmg.a.37944
Zheng S, Lee PY, Wang J, Wang S, Huang Q, Huang Y, et al. Interstitial lung disease and psoriasis in a child with Aicardi-Goutières syndrome. Front Immunol. 2020;11:985.
pubmed: 32508843
pmcid: 7251162
doi: 10.3389/fimmu.2020.00985
Afshar M, Martinez AD, Gallo RL, Hata TR. Induction and exacerbation of psoriasis with Interferon-alpha therapy for hepatitis C: a review and analysis of 36 cases. J Eur Acad Dermatol Venereol. 2013;27:771–8.
pubmed: 22671985
doi: 10.1111/j.1468-3083.2012.04582.x
Cinotti E, Bertello M, Habougit C, Rongioletti F, Cambazard F, Antoine JC, et al. Aicardi-Goutières syndrome: a possible explanation of angiokeratoma of Mibelli. J Eur Acad Dermatol Venereol. 2021;35:e770–2.
pubmed: 34077575
doi: 10.1111/jdv.17440
Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutières syndrome. Am J Hum Genet. 2007;80:811–5.
pubmed: 17357087
pmcid: 1852703
doi: 10.1086/513443
Günther C, Meurer M, Stein A, Viehweg A, Lee-Kirsch MA. Familial chilblain lupus—a monogenic form of cutaneous lupus erythematosus due to a heterozygous mutation in TREX1. Dermatology. 2009;219:162–6.
pubmed: 19478477
doi: 10.1159/000222430
Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73:693–9.
pubmed: 12916015
pmcid: 1180697
doi: 10.1086/378209
Carella C, Mazziotti G, Amato G, Braverman LE, Roti E. Interferon-α-related thyroid disease: pathophysiological, epidemiological, and clinical aspects. J Clin Endocrinol Metab. 2004;89:3656–61.
pubmed: 15292282
doi: 10.1210/jc.2004-0627
Worth C, Briggs TA, Padidela R, Balmer E, Skae M. Endocrinopathies in Aicardi Goutières syndrome—a descriptive case series. Clin Case Reports. 2020;8:2181–5.
doi: 10.1002/ccr3.3081
Orcesi S, Pessagno A, Biancheri R, La Piana R, Mascaretti M, Rossi A, et al. Aicardi-Goutières syndrome presenting atypically as a subacute leukoencephalopathy. Eur J Paediatr Neurol. 2008;12:408–11.
pubmed: 18069026
doi: 10.1016/j.ejpn.2007.10.005
Tonduti D, Fazzi E, Badolato R, Orcesi S. Novel and emerging treatments for Aicardi-Goutières syndrome. Expert Rev Clin Immunol. 2020;16:189–98.
pubmed: 31855085
doi: 10.1080/1744666X.2019.1707663
Adang LA, Frank DB, Gilani A, Takanohashi A, Ulrick N, Collins A, et al. Aicardi Goutières syndrome is associated with pulmonary hypertension. Mol Genet Metab. 2018;125:351–8.
pubmed: 30219631
pmcid: 6880931
doi: 10.1016/j.ymgme.2018.09.004
Cattalini M, Galli J, Zunica F, Ferraro RM, Carpanelli M, Orcesi S, et al. Case report: the JAK-inhibitor ruxolitinib use in Aicardi-Goutieres syndrome due to ADAR1 mutation. Front Pediatr. 2021;9:725868.
pubmed: 34778129
pmcid: 8578119
doi: 10.3389/fped.2021.725868
Vanderver A, Adang L, Gavazzi F, McDonald K, Helman G, Frank DB, et al. Janus kinase inhibition in the Aicardi-Goutières syndrome. N Engl J Med. 2020;383:986–9.
pubmed: 32877590
pmcid: 7495410
doi: 10.1056/NEJMc2001362
Meesilpavikkai K, Dik WA, Schrijver B, van Helden-Meeuwsen CG, Versnel MA, van Hagen PM, et al. Efficacy of baricitinib in the treatment of chilblains associated with Aicardi-Goutières syndrome, a type I interferonopathy. Arthritis Rheumatol. 2019;71:829–31.
pubmed: 30666809
pmcid: 6593964
doi: 10.1002/art.40805
Kothur K, Bandodkar S, Chu S, Wienholt L, Johnson A, Barclay P, et al. An open-label trial of JAK 1/2 blockade in progressive IFIH1-associated neuroinflammation. Neurology. 2018;90:289–91.
pubmed: 29321238
doi: 10.1212/WNL.0000000000004921
Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N, Semeraro M, et al. Reverse-transcriptase inhibitors in the Aicardi-Goutières syndrome. N Engl J Med. 2018;379:2275–7.
pubmed: 30566312
doi: 10.1056/NEJMc1810983
Tüngler V, König N, Günther C, Engel K, Fiehn C, Smitka M, et al. Response to: “JAK inhibition in STING-associated interferonopathy” by Crow et al. Ann Rheum Dis. 2016;75:e76.
Furumoto Y, Gadina M. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs. 2013;27:431–8.
pubmed: 23743669
pmcid: 3778139
doi: 10.1007/s40259-013-0040-7
Casas-Alba D, Darling A, Caballero E, Mensa-Vilaró A, Bartrons J, Antón J, et al. Efficacy of baricitinib on chronic pericardial effusion in a patient with Aicardi-Goutières syndrome. Rheumatology (Oxford). 2022;61:e87–9.
pubmed: 34850826
doi: 10.1093/rheumatology/keab860
Wang Y, De Clercq E, Li G. Current and emerging nonnucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin Drug Metab Toxicol. 2019;15:813–29.
pubmed: 31556749
doi: 10.1080/17425255.2019.1673367
Stetson DB. Endogenous retroelements and autoimmune disease. Curr Opin Immunol. 2012;24:692–7.
pubmed: 23062469
pmcid: 4005353
doi: 10.1016/j.coi.2012.09.007
Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN. Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. J Immunol. 2012;189:5976–84.
pubmed: 23175700
doi: 10.4049/jimmunol.1201477
Takeuchi T, Tanaka Y, Matsumura R, Saito K, Yoshimura M, Amano K, et al. Safety and tolerability of sifalimumab, an anti-interferon-α monoclonal antibody, in Japanese patients with systemic lupus erythematosus: a multicenter, phase 2, open-label study. Mod Rheumatol. 2020;30:93–100.
pubmed: 30791804
doi: 10.1080/14397595.2019.1583832
Greth W, Robbie GJ, Brohawn P, Hultquist M, Yao B. Targeting the interferon pathway with sifalimumab for the treatment of systemic lupus erythematosus. Immunotherapy. 2017;9:57–70.
pubmed: 28000522
doi: 10.2217/imt-2016-0090
Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382:211–21.
pubmed: 31851795
doi: 10.1056/NEJMoa1912196
Gray EE, Treuting PM, Woodward JJ, Stetson DB. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J Immunol. 2015;195:1939–43.
pubmed: 26223655
doi: 10.4049/jimmunol.1500969
Wiser C, Kim B, Vincent J, Ascano M. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Sci Rep. 2020;10:7604.
pubmed: 32371942
pmcid: 7200739
doi: 10.1038/s41598-020-64348-y
Steinhagen F, Zillinger T, Peukert K, Fox M, Thudium M, Barchet W, et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur J Immunol. 2018;48:605–11.
pubmed: 29215161
doi: 10.1002/eji.201747338
Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem. 2018;10:1301–17.
pubmed: 29558821
doi: 10.4155/fmc-2017-0322
Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell. 2019;176:1447–60.e14.
pubmed: 30799039
pmcid: 8274936
doi: 10.1016/j.cell.2019.01.016
Harcourt JL, Offermann MK. Interferon-alpha synergistically enhances induction of interleukin-6 by double stranded RNA in HeLa cells. Eur J Biochem. 2000;267:2768–77.
pubmed: 10785400
doi: 10.1046/j.1432-1327.2000.01300.x
Henrickson M, Wang H. Tocilizumab reverses cerebral vasculopathy in a patient with homozygous SAMHD1 mutation. Clin Rheumatol. 2017;36:1445–51.
pubmed: 28289923
pmcid: 5486483
doi: 10.1007/s10067-017-3600-2