The role of PFAS in unsettling ocean carbon sequestration.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
18 Jan 2023
Historique:
received: 05 03 2022
accepted: 31 12 2022
entrez: 18 1 2023
pubmed: 19 1 2023
medline: 21 1 2023
Statut: epublish

Résumé

Poly- and perfluoroalkyl substances (PFAS) and global climate change have attracted worldwide attention. PFAS have been found all across the planet, from the polar regions to the global ocean. Global oceans have emerged as a substantial sink for the carbon in the environment due to their remarkable capacity to absorb atmospheric carbon. Oceans absorb around 24% of the world's CO

Identifiants

pubmed: 36652110
doi: 10.1007/s10661-023-10912-8
pii: 10.1007/s10661-023-10912-8
pmc: PMC9848026
doi:

Substances chimiques

Carbon 7440-44-0
Carbon Dioxide 142M471B3J
Fluorocarbons 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

310

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abunada, Z., Alazaiza, M. Y., & Bashir, M. J. (2020). An overview of per-and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water, 12(12), 3590.  https://doi.org/10.3390/w12123590
doi: 10.3390/w12123590
Al Amin, M., Sobhani, Z., Liu, Y., Dharmaraja, R., Chadalavada, S., Naidu, R., Fang, C. (2020). Recent advances in the analysis of per-and polyfluoroalkyl substances (PFAS)—A review. Environmental technology & innovation, 100879.  https://doi.org/10.1016/j.eti.2020.100879
Atwood, T. B., Witt, A., Mayorga, J., Hammill, E., & Sala, E. (2020). Global patterns in marine sediment carbon stocks. Frontiers in Marine Science, 7, 165.  https://doi.org/10.3389/fmars.2020.00165 .
doi: 10.3389/fmars.2020.00165
Barghi, M., Jin, X., Lee, S., Jeong, Y., Yu, J.-P., Paek, W.-K., & Moon, H.-B. (2018). Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds. Science of the Total Environment, 645, 220–228.  https://doi.org/10.1016/j.scitotenv.2018.07.040
doi: 10.1016/j.scitotenv.2018.07.040
Bartlett, A. J., De Silva, A. O., Schissler, D. M., Hedges, A. M., Brown, L. R., Shires, K., & Parrott, J. L. (2021). Lethal and sublethal toxicity of perfluorooctanoic acid (PFOA) in chronic tests with Hyalella azteca (amphipod) and early-life stage tests with Pimephales promelas (fathead minnow). Ecotoxicology and Environmental Safety, 207, 111250.  https://doi.org/10.1016/j.ecoenv.2020.111250
doi: 10.1016/j.ecoenv.2020.111250
Belcher, A., Tarling, G., Manno, C., Atkinson, A., Ward, P., Skaret, G., & Sanders, R. (2017). The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biology, 40(10), 2001–2013.  https://doi.org/10.1007/s00300-017-2118-z .
doi: 10.1007/s00300-017-2118-z
Casal, P., González-Gaya, B., Zhang, Y., Reardon, A. J., Martin, J. W., Jiménez, B., & Dachs, J. (2017). Accumulation of perfluoroalkylated substances in oceanic plankton. Environmental Science & Technology, 51(5), 2766–2775.  https://doi.org/10.1021/acs.est.6b05821 .
doi: 10.1021/acs.est.6b05821
Cerro Gálvez, E. (2019). Analysis of the impact of organic pollutants on marine microbial communities
Cui, D., Li, X., & Quinete, N. (2020). Occurrence, fate, sources and toxicity of PFAS: What we know so far in Florida and major gaps. TrAC Trends in Analytical Chemistry, 115976.  https://doi.org/10.1016/j.trac.2020.115976 .
Dean, W. S., Adejumo, H. A., Caiati, A., Garay, P. M., Harmata, A. S., Li, L., & Sundar, S. (2020). A framework for regulation of new and existing PFAS by EPA. Journal Science Policy Governance, 16
DeLuca, N. M., Angrish, M., Wilkins, A., Thayer, K., & Hubal, E. A. C. (2021). Human exposure pathways to poly-and perfluoroalkyl substances (PFAS) from indoor media: A systematic review protocol. Environment International, 146, 106308.  https://doi.org/10.1016/j.envint.2020.106308 .
doi: 10.1016/j.envint.2020.106308
Du, D., Lu, Y., Zhou, Y., Li, Q., Zhang, M., Han, G., & Jeppesen, E. (2021). Bioaccumulation, trophic transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South China Sea. Journal of Hazardous Materials, 405, 124681.  https://doi.org/10.1016/j.jhazmat.2020.124681 .
doi: 10.1016/j.jhazmat.2020.124681
Fang, S., Chen, X., Zhao, S., Zhang, Y., Jiang, W., Yang, L., & Zhu, L. (2014). Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake China. Environmental Science & Technology, 48(4), 2173–2182.  https://doi.org/10.1021/es405018b .
doi: 10.1021/es405018b
Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., & Roberts, S. M. (2021). Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40(3), 606–630.  https://doi.org/10.1002/etc.4890 .
doi: 10.1002/etc.4890
Gallen, C., Eaglesham, G., Drage, D., Nguyen, T. H., & Mueller, J. (2018). A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Chemosphere, 208, 975–983.  https://doi.org/10.1016/j.chemosphere.2018.06.024 .
doi: 10.1016/j.chemosphere.2018.06.024
Gardener, H., Sun, Q., & Grandjean, P. (2020). PFAS concentration during pregnancy in relation to cardiometabolic health and birth outcomes. Environmental Research, 192, 110287.  https://doi.org/10.1016/j.envres.2020.110287 .
doi: 10.1016/j.envres.2020.110287
Gebbink, W. A., Bignert, A., & Berger, U. (2016). Perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea Environment: Do precursors play a role in food web accumulation of PFAAs? Environmental Science & Technology, 50(12), 6354–6362.  https://doi.org/10.1021/acs.est.6b01197 .
doi: 10.1021/acs.est.6b01197
González-Gaya, B., Casal, P., Jurado, E., Dachs, J., & Jiménez, B. (2019). Vertical transport and sinks of perfluoroalkyl substances in the global open ocean. Environmental Science: Processes & Impacts, 21(11), 1957–1969.  https://doi.org/10.1039/C9EM00266A .
Han, T., Chen, J., Lin, K., He, X., Li, S., Xu, T., Wang, J. (2022). Spatial distribution, vertical profiles and transport of legacy and emerging per-and polyfluoroalkyl substances in the Indian Ocean. Journal of Hazardous Materials, 129264.  https://doi.org/10.1016/j.jhazmat.2022.129264 .
Haukås, M., Berger, U., Hop, H., Gulliksen, B., & Gabrielsen, G. W. (2007). Bioaccumulation of per-and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environmental Pollution, 148(1), 360–371.  https://doi.org/10.1016/j.envpol.2006.09.021 .
doi: 10.1016/j.envpol.2006.09.021
Jiao, N., & Zheng, Q. (2011). The microbial carbon pump: From genes to ecosystems. Applied and Environmental Microbiology, 77(21), 7439–7444.  https://doi.org/10.1128/AEM.05640-11 .
doi: 10.1128/AEM.05640-11
Kah, M., Oliver, D., & Kookana, R. (2020). Sequestration and potential release of PFAS from spent engineered sorbents. Science of The Total Environment, 142770.  https://doi.org/10.1016/j.scitotenv.2020.142770 .
Kucharzyk, K. H., Darlington, R., Benotti, M., Deeb, R., & Hawley, E. (2017). Novel treatment technologies for PFAS compounds: A critical review. Journal of Environmental Management, 204, 757–764.  https://doi.org/10.1016/j.jenvman.2017.08.016 .
doi: 10.1016/j.jenvman.2017.08.016
Kwiatkowski, C. F., Andrews, D. Q., Birnbaum, L. S., Bruton, T. A., DeWitt, J. C., Knappe, D. R., & Reade, A. (2020). Scientific basis for managing PFAS as a chemical class. Environmental Science & Technology Letters, 7(8), 532–543.  https://doi.org/10.1021/acs.estlett.0c00255 .
doi: 10.1021/acs.estlett.0c00255
Kwon, B. G., Lim, H.-J., Na, S.-H., Choi, B.-I., Shin, D.-S., & Chung, S.-Y. (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere, 109, 221–225.  https://doi.org/10.1016/j.chemosphere.2014.01.072 .
doi: 10.1016/j.chemosphere.2014.01.072
Lam, N.-H., Cho, C.-R., Lee, J.-S., Soh, H.-Y., Lee, B.-C., Lee, J.-A., & Iwabuchi, K. (2014). Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: A nationwide survey. Science of the Total Environment, 491, 154–162.  https://doi.org/10.1016/j.scitotenv.2014.01.045 .
doi: 10.1016/j.scitotenv.2014.01.045
Le, S.-T., Kibbey, T. C., Weber, K. P., Glamore, W. C., & O'Carroll, D. M. (2020). A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate. Science of The Total Environment, 142882.  https://doi.org/10.1016/j.scitotenv.2020.142882 .
Lebrato, M., Pahlow, M., Frost, J. R., Küter, M., de Jesus Mendes, P., Molinero, J. C., & Oschlies, A. (2019). Sinking of gelatinous zooplankton biomass increases deep carbon transfer efficiency globally. Global Biogeochemical Cycles, 33(12), 1764–1783.  https://doi.org/10.1029/2019GB006265 .
doi: 10.1029/2019GB006265
Lenka, S. P., Kah, M., & Padhye, L. P. (2021a). A review of the occurrence, transformation, and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 199, 117187.  https://doi.org/10.1016/j.watres.2021.117187 .
doi: 10.1016/j.watres.2021.117187
Lenka, S. P., Kah, M., & Padhye, L. P. (2021b). A review of the occurrence, transformation, and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water research, 117187.  https://doi.org/10.1016/j.watres.2021.117187 .
Li, Y., Liu, X., Zheng, X., Yang, M., Gao, X., Huang, J., & Fan, Z. (2021). Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Science of the Total Environment, 765, 144431.  https://doi.org/10.1016/j.scitotenv.2020.144431 .
doi: 10.1016/j.scitotenv.2020.144431
Liu, W., Li, J., Gao, L., Zhang, Z., Zhao, J., He, X., & Zhang, X. (2018). Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus. Environmental Pollution, 233, 8–15.  https://doi.org/10.1016/j.envpol.2017.10.039 .
doi: 10.1016/j.envpol.2017.10.039
Liu, Y., Li, X., Wang, X., Qiao, X., Hao, S., Lu, J., & Zheng, B. (2019). Contamination profiles of perfluoroalkyl substances (PFAS) in groundwater in the alluvial–pluvial plain of Hutuo River China. Water, 11(11), 2316.  https://doi.org/10.3390/w11112316 .
doi: 10.3390/w11112316
Loi, E. I., Yeung, L. W., Taniyasu, S., Lam, P. K., Kannan, K., & Yamashita, N. (2011). Trophic magnification of poly-and perfluorinated compounds in a subtropical food web. Environmental Science & Technology, 45(13), 5506–5513.  https://doi.org/10.1021/es200432n .
doi: 10.1021/es200432n
Lu, D., Sha, S., Luo, J., Huang, Z., & Jackie, X. Z. (2020). Treatment train approaches for the remediation of per-and polyfluoroalkyl substances (PFAS): A critical review. Journal of Hazardous Materials, 386, 121963.  https://doi.org/10.1016/j.jhazmat.2019.121963 .
doi: 10.1016/j.jhazmat.2019.121963
Mhadhbi, L., Rial, D., Pérez, S., & Beiras, R. (2012). Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima. Journal of Environmental Monitoring, 14(5), 1375–1382.  https://doi.org/10.1039/C2EM30037K .
doi: 10.1039/c2em30037k
Mitchell, R. J., Myers, A. L., Mabury, S. A., Solomon, K. R., & Sibley, P. K. (2011). Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca. Ecotoxicology and Environmental Safety, 74(8), 2260–2267.  https://doi.org/10.1016/j.ecoenv.2011.07.034 .
doi: 10.1016/j.ecoenv.2011.07.034
Munoz, G., Budzinski, H., Babut, M., Lobry, J., Selleslagh, J., Tapie, N., & Labadie, P. (2019). Temporal variations of perfluoroalkyl substances partitioning between surface water, suspended sediment, and biota in a macrotidal estuary. Chemosphere, 233, 319–326.  https://doi.org/10.1016/j.chemosphere.2019.05.281 .
doi: 10.1016/j.chemosphere.2019.05.281
Niu, Z., Na, J., Wu, N., & Zhang, Y. (2019). The effect of environmentally relevant emerging per-and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp. Environmental Pollution, 252, 103–109.  https://doi.org/10.1016/j.envpol.2019.05.103 .
doi: 10.1016/j.envpol.2019.05.103
Pascariello, S., Mazzoni, M., Bettinetti, R., Manca, M., Patelli, M., Piscia, R., & Polesello, S. (2019). Organic contaminants in zooplankton of Italian subalpine lakes: Patterns of distribution and seasonal variations. Water, 11(9), 1901.  https://doi.org/10.3390/w11091901 .
doi: 10.3390/w11091901
Pelch, K. E., Reade, A., Wolffe, T. A., & Kwiatkowski, C. F. (2019). PFAS health effects database: Protocol for a systematic evidence map. Environment International, 130,  https://doi.org/10.1016/j.envint.2019.05.045 .
Pfotenhauer, D., Sellers, E., Olson, M., Praedel, K., & Shafer, M. (2022). PFAS concentrations and deposition in precipitation: An intensive 5-month study at National Atmospheric Deposition Program-National trends sites (NADP-NTN) across Wisconsin, USA. Atmospheric Environment, 291, 119368.  https://doi.org/10.1016/j.atmosenv.2022.11936 .
doi: 10.1016/j.atmosenv.2022.119368
Ramírez Carnero, A., Lestido-Cardama, A., Vazquez Loureiro, P., Barbosa-Pereira, L., Bernaldo, R., de Quirós, A., & Sendón, R. (2021). Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods, 10(7), 1443.  https://doi.org/10.3390/foods10071443 .
doi: 10.3390/foods10071443
Renforth, P., & Henderson, G. (2017). Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55(3), 636–674.  https://doi.org/10.1002/2016RG000533 .
doi: 10.1002/2016RG000533
Shahsavari, E., Rouch, D., Khudur, L. S., Thomas, D., Aburto-Medina, A., & Ball, A. S. (2020). Challenges and current status of the biological treatment of PFAS-contaminated soils. Frontiers in Bioengineering and Biotechnology, 8.  https://doi.org/10.3389/fbioe.2020.602040 .
Shen, M., Ye, S., Zeng, G., Zhang, Y., Xing, L., Tang, W., & Liu, S. (2020). Can microplastics pose a threat to ocean carbon sequestration? Marine Pollution Bulletin, 150, 110712.  https://doi.org/10.1016/j.marpolbul.2019.110712 .
doi: 10.1016/j.marpolbul.2019.110712
Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9, 413–444
doi: 10.1146/annurev-marine-010814-015924
Teunen, L., Bervoets, L., Belpaire, C., De Jonge, M., & Groffen, T. (2021). PFAS accumulation in indigenous and translocated aquatic organisms from Belgium, with translation to human and ecological health risk. Environmental Sciences Europe, 33(1), 1–19.  https://doi.org/10.1186/s12302-021-00477-z .
doi: 10.1186/s12302-021-00477-z
Wang, S., Cai, Y., Ma, L., Lin, X., Li, Q., Li, Y., & Wang, X. (2022). Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk. Chemosphere, 288, 132513.  https://doi.org/10.1016/j.chemosphere.2021.132513 .
doi: 10.1016/j.chemosphere.2021.132513
Wieczorek, A. M., Croot, P. L., Lombard, F., Sheahan, J. N., & Doyle, T. K. (2019). Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environmental Science & Technology, 53(9), 5387–5395.  https://doi.org/10.1021/acs.est.8b07174 .
doi: 10.1021/acs.est.8b07174
Yamashita, N., Taniyasu, S., Petrick, G., Wei, S., Gamo, T., Lam, P. K., & Kannan, K. (2008). Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere, 70(7), 1247–1255.  https://doi.org/10.1016/j.chemosphere.2007.07.079 .
doi: 10.1016/j.chemosphere.2007.07.079
Yi, L., Chai, L., Xie, Y., Peng, Q., & Peng, Q. (2016). Isolation, identification, and degradation performance of a PFOA-degrading strain. Genetics and Molecular Research, 15(2), 235–246.  https://doi.org/10.4238/gmr.15028043 .
doi: 10.4238/gmr.15028043
Zhang, W., Zhang, Y., Taniyasu, S., Yeung, L. W., Lam, P. K., Wang, J., & Dai, J. (2013). Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. Environmental Pollution, 176, 10–17.  https://doi.org/10.1016/j.envpol.2012.12.019 .
doi: 10.1016/j.envpol.2012.12.019
Zhu, E., Deng, J., Zhou, M., Gan, M., Jiang, R., Wang, K., & Shahtahmassebi, A. (2019). Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Science of the Total Environment, 646, 930–939.  https://doi.org/10.1016/j.scitotenv.2018.07.317 .
doi: 10.1016/j.scitotenv.2018.07.317

Auteurs

Ali Mahmoudnia (A)

Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran. ali.mahmoudnia@ut.ac.ir.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH