FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms.


Journal

Molecular neurodegeneration
ISSN: 1750-1326
Titre abrégé: Mol Neurodegener
Pays: England
ID NLM: 101266600

Informations de publication

Date de publication:
18 01 2023
Historique:
received: 12 05 2022
accepted: 16 12 2022
entrez: 18 1 2023
pubmed: 19 1 2023
medline: 21 1 2023
Statut: epublish

Résumé

Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/β-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.

Sections du résumé

BACKGROUND
Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points.
METHODS
In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems.
RESULTS
We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/β-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs.
CONCLUSIONS
Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.

Identifiants

pubmed: 36653804
doi: 10.1186/s13024-022-00591-3
pii: 10.1186/s13024-022-00591-3
pmc: PMC9847053
doi:

Substances chimiques

FUS protein, human 0
RNA-Binding Protein FUS 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5

Informations de copyright

© 2023. The Author(s).

Références

Stem Cell Reports. 2017 Apr 11;8(4):856-869
pubmed: 28366453
Neuron. 2014 Mar 5;81(5):1009-1023
pubmed: 24607225
Nat Methods. 2019 Dec;16(12):1226-1232
pubmed: 31570887
Nat Biotechnol. 2015 Jan;33(1):89-96
pubmed: 25383599
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2107391119
pubmed: 35312356
Development. 2017 May 1;144(9):1712-1724
pubmed: 28348167
J Biol Phys. 2009 Oct;35(4):337-46
pubmed: 19669429
Acta Neuropathol Commun. 2016 Sep 06;4(1):99
pubmed: 27600654
Acta Neuropathol. 2019 May;137(5):715-730
pubmed: 30465257
Invest Ophthalmol Vis Sci. 2014 Aug 14;55(9):5482-96
pubmed: 25125606
BMC Bioinformatics. 2011 Dec 17;12:480
pubmed: 22177264
Sci Rep. 2020 Oct 7;10(1):16679
pubmed: 33028902
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Cancer Res. 2007 Jul 15;67(14):6725-36
pubmed: 17638883
Genome Res. 2022 Jan;32(1):71-84
pubmed: 34963663
Neurol Res. 2012 May;34(4):390-9
pubmed: 22643084
Neuron. 1996 Mar;16(3):675-86
pubmed: 8785064
Nat Commun. 2020 Jul 27;11(1):3753
pubmed: 32719333
Neuron. 2022 May 18;110(10):1656-1670.e12
pubmed: 35276083
Cell Stem Cell. 2008 Dec 4;3(6):649-57
pubmed: 19041781
Nature. 2017 Jan 26;541(7638):481-487
pubmed: 28099414
Brain. 2022 Apr 18;145(2):481-489
pubmed: 35042241
Nat Rev Neurosci. 2017 Jan;18(1):31-41
pubmed: 27904142
Glia. 2017 Apr;65(4):592-605
pubmed: 28139855
Neurobiol Dis. 2019 Oct;130:104497
pubmed: 31176720
J Biol Chem. 2008 Aug 1;283(31):21668-75
pubmed: 18541538
Glia. 2018 May;66(5):1016-1033
pubmed: 29380416
Nat Biotechnol. 2011 Aug 10;29(9):824-8
pubmed: 21832997
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18812-7
pubmed: 19020093
J Neurochem. 2011 Jan;116(1):1-9
pubmed: 21044077
Glia. 1998 Jul;23(3):249-56
pubmed: 9633809
Ann Neurol. 1995 Jul;38(1):73-84
pubmed: 7611729
Int J Mol Sci. 2019 Jun 05;20(11):
pubmed: 31195629
Bioinformatics. 2014 Feb 15;30(4):523-30
pubmed: 24336805
Mol Brain. 2017 Jun 13;10(1):22
pubmed: 28610619
Front Mol Neurosci. 2016 Nov 09;9:118
pubmed: 27881951
Eur J Neurol. 2020 Oct;27(10):1918-1929
pubmed: 32526057
Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86
pubmed: 23193289
Methods Mol Biol. 2019;1889:169-183
pubmed: 30367414
Biotechnol Lett. 2013 Aug;35(8):1199-207
pubmed: 23553522
Development. 2012 Mar;139(5):1023-33
pubmed: 22318632
Int J Cancer. 2009 Dec 15;125(12):2863-70
pubmed: 19609947
Front Cell Neurosci. 2014 Feb 07;8:24
pubmed: 24570655
Nat Commun. 2017 Oct 11;8(1):861
pubmed: 29021520
PLoS One. 2011 Mar 18;6(3):e17187
pubmed: 21445241
Stem Cell Reports. 2017 Apr 11;8(4):843-855
pubmed: 28366455
Neurobiol Dis. 2021 Jan;147:105156
pubmed: 33130222
Bioinformatics. 2007 Nov 1;23(21):2881-7
pubmed: 17881408
Neuroscientist. 2015 Apr;21(2):152-68
pubmed: 24571856
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
J Child Neurol. 2020 Jul;35(8):556-562
pubmed: 32281455
Bioinformatics. 2009 Oct 1;25(19):2607-8
pubmed: 19654119
Neurochem Res. 2013 Sep;38(9):1904-13
pubmed: 23784673
Biochem Biophys Res Commun. 2012 Apr 6;420(2):397-403
pubmed: 22426476
Mol Neurobiol. 2019 Oct;56(10):6777-6791
pubmed: 30924074
Curr Opin Cell Biol. 1998 Apr;10(2):262-7
pubmed: 9561851
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Commun Integr Biol. 2008;1(2):158-60
pubmed: 19704879
Front Immunol. 2019 May 09;10:1043
pubmed: 31143184
Stem Cell Reports. 2017 Aug 8;9(2):667-680
pubmed: 28712846
Glia. 2020 May;68(5):1046-1064
pubmed: 31841614
EBioMedicine. 2019 Dec;50:274-289
pubmed: 31787569
Eur J Neurol. 2009 Jun;16(6):771-4
pubmed: 19236470
Nat Neurosci. 2021 Mar;24(3):312-325
pubmed: 33589835
Stem Cell Reports. 2021 Nov 9;16(11):2736-2751
pubmed: 34678206
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Cell Stem Cell. 2008 Dec 4;3(6):637-48
pubmed: 19041780
Neuron. 2010 Sep 9;67(5):797-809
pubmed: 20826311
Brain. 2019 Sep 1;142(9):2572-2580
pubmed: 31368485
Brain. 2011 Sep;134(Pt 9):2627-41
pubmed: 21908873
Nat Neurosci. 2007 May;10(5):615-22
pubmed: 17435755
Neural Regen Res. 2020 Sep;15(9):1580-1589
pubmed: 32209757
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Int Anesthesiol Clin. 2007 Spring;45(2):27-37
pubmed: 17426506
J Exp Med. 2011 Nov 21;208(12):2429-47
pubmed: 22084410
Elife. 2018 Aug 16;7:
pubmed: 30113308
Front Cell Dev Biol. 2021 Feb 04;8:615131
pubmed: 33614624
J Vis Exp. 2021 Sep 7;(175):
pubmed: 34570099
Glia. 2016 Jul;64(7):1154-69
pubmed: 27083773
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Sci Rep. 2018 Oct 23;8(1):15670
pubmed: 30353135
Stem Cell Reports. 2022 Jul 12;17(7):1650-1665
pubmed: 35750046
Neurosci Res. 2017 Jan;114:16-29
pubmed: 27562517
Nat Commun. 2018 Sep 11;9(1):3683
pubmed: 30206235
Cells. 2021 Apr 08;10(4):
pubmed: 33917816
Mol Cancer. 2010 May 19;9:111
pubmed: 20482821
J Neurol Neurosurg Psychiatry. 2017 Jul;88(7):540-549
pubmed: 28057713
Int J Clin Exp Pathol. 2013 Jun 15;6(7):1245-60
pubmed: 23826406
J Neuroinflammation. 2012 May 30;9:111
pubmed: 22647544
Nat Neurosci. 2008 Nov;11(11):1294-301
pubmed: 18931666
Sci Rep. 2019 Mar 14;9(1):4572
pubmed: 30872738
Genome Res. 2003 Sep;13(9):2129-41
pubmed: 12952881
Stem Cell Reports. 2021 Sep 14;16(9):2213-2227
pubmed: 33891869
Neurobiol Dis. 2019 Dec;132:104562
pubmed: 31381978
Exp Cell Res. 2019 Mar 15;376(2):221-226
pubmed: 30779920
Nat Neurosci. 2008 Mar;11(3):251-3
pubmed: 18246065

Auteurs

Katarina Stoklund Dittlau (K)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium.

Lisanne Terrie (L)

Department of Development and Regeneration, KU Leuven - University of Leuven, Campus Kulak, 8500, Kortrijk, Belgium.

Pieter Baatsen (P)

KU Leuven - University of Leuven, EM-Platform of the VIB Bio Imaging Core and VIB Center for Brain and Disease Research, Research Group Molecular Neurobiology, 3000, Leuven, Belgium.

Axelle Kerstens (A)

KU Leuven - University of Leuven, VIB Bio Imaging Core; VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.

Lim De Swert (L)

VIB Nucleomics Core, VIB, Herestraat 49, 3000, Leuven, Belgium.

Rekin's Janky (R)

VIB Nucleomics Core, VIB, Herestraat 49, 3000, Leuven, Belgium.

Nikky Corthout (N)

KU Leuven - University of Leuven, VIB Bio Imaging Core; VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.

Pegah Masrori (P)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium.
Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium.

Philip Van Damme (P)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium.
Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium.

Poul Hyttel (P)

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.

Morten Meyer (M)

Department of Neurology, Odense University Hospital, 5000, Odense, Denmark.
Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark.

Lieven Thorrez (L)

Department of Development and Regeneration, KU Leuven - University of Leuven, Campus Kulak, 8500, Kortrijk, Belgium.

Kristine Freude (K)

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.

Ludo Van Den Bosch (L)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium. ludo.vandenbosch@kuleuven.be.
VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium. ludo.vandenbosch@kuleuven.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH