Multimodal Brain Signal Complexity Predicts Human Intelligence.
EEG
brain signal complexity
cognitive ability
intelligence
microstates
resting-state
Journal
eNeuro
ISSN: 2373-2822
Titre abrégé: eNeuro
Pays: United States
ID NLM: 101647362
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
received:
26
08
2022
revised:
01
12
2022
accepted:
13
12
2022
pubmed:
20
1
2023
medline:
11
2
2023
entrez:
19
1
2023
Statut:
epublish
Résumé
Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven's Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (
Identifiants
pubmed: 36657966
pii: ENEURO.0345-22.2022
doi: 10.1523/ENEURO.0345-22.2022
pmc: PMC9910576
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2023 Thiele et al.
Déclaration de conflit d'intérêts
The authors declare no competing financial interests.
Références
Brain Res Cogn Brain Res. 2003 Apr;16(2):267-72
pubmed: 12668236
Neuropsychology. 2010 Sep;24(5):563-72
pubmed: 20804244
Entropy (Basel). 2019 Jul 18;21(7):
pubmed: 33267420
Am Psychol. 1994 Apr;49(4):304-13
pubmed: 8203802
Brain Topogr. 2021 Jan;34(1):19-28
pubmed: 33095401
Neuroimage. 2017 Feb 1;146:533-543
pubmed: 27742598
J Neurosci. 2016 Aug 17;36(33):8551-61
pubmed: 27535904
J Intell. 2020 Oct 02;8(4):
pubmed: 33023250
Phys Rev Lett. 2002 Aug 5;89(6):068102
pubmed: 12190613
Front Neurosci. 2013 Dec 26;7:267
pubmed: 24431986
J Intell. 2021 Nov 30;9(4):
pubmed: 34940381
Neuroimage. 2016 Jan 15;125:643-656
pubmed: 26285079
Hum Brain Mapp. 2020 Feb 1;41(2):362-372
pubmed: 31587450
Clin Neurophysiol. 2015 Mar;126(3):524-31
pubmed: 25066939
Int J Psychophysiol. 1999 Sep;33(3):259-73
pubmed: 10533842
Clin Neurophysiol. 2008 Jun;119(6):1232-41
pubmed: 18396454
Netw Neurosci. 2022 Feb 01;6(1):29-48
pubmed: 35350584
Cereb Cortex. 2022 Sep 19;32(19):4172-4182
pubmed: 35136956
J Vis Exp. 2013 Jun 27;(76):
pubmed: 23851571
Front Neuroinform. 2015 Jun 18;9:16
pubmed: 26150785
Perspect Psychol Sci. 2017 Nov;12(6):1100-1122
pubmed: 28841086
Nature. 2022 Mar;603(7902):654-660
pubmed: 35296861
Psychophysiology. 2000 Mar;37(2):163-78
pubmed: 10731767
Brain Topogr. 2017 Jul;30(4):502-520
pubmed: 28493012
Trends Cogn Sci. 2012 Dec;16(12):584-92
pubmed: 23142417
Cereb Cortex. 2016 Oct;26(10):4015-33
pubmed: 26347485
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
pubmed: 10843903
J Neurosci. 2011 Apr 27;31(17):6405-13
pubmed: 21525281
Hum Brain Mapp. 2020 Dec;41(17):4846-4865
pubmed: 32808732
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021906
pubmed: 15783351
Neurosci Lett. 1992 Aug 31;143(1-2):10-4
pubmed: 1436649
Front Hum Neurosci. 2014 Jun 10;8:409
pubmed: 24959130
J Neurosci Methods. 2016 Nov 1;273:175-190
pubmed: 27639660
Nat Neurosci. 2022 Jul;25(7):835-837
pubmed: 35710985
Netw Neurosci. 2021 Aug 30;5(3):631-645
pubmed: 34746620
IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65
pubmed: 7622149
Int J Epidemiol. 2011 Jun;40(3):626-44
pubmed: 21037248
Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87
pubmed: 17655784
Brain Topogr. 2020 Jul;33(4):438-449
pubmed: 32468297
IEEE Trans Biomed Eng. 2006 Jun;53(6):1067-77
pubmed: 16761834
Cereb Cortex. 2014 Jul;24(7):1806-17
pubmed: 23395850
Psychometrika. 1965 Jun;30:179-85
pubmed: 14306381
Trends Cogn Sci. 2010 Apr;14(4):172-9
pubmed: 20171926
Psychol Med. 2016 Feb;46(3):519-28
pubmed: 26456561
Neuroimage. 2002 May;16(1):41-8
pubmed: 11969316
Electroencephalogr Clin Neurophysiol. 1971 Nov;31(5):439-49
pubmed: 4107798
Clin Neurophysiol. 2009 May;120(5):868-77
pubmed: 19345611
J Pers Soc Psychol. 2004 Jan;86(1):130-47
pubmed: 14717632
Nat Neurosci. 2015 Nov;18(11):1664-71
pubmed: 26457551
Nat Protoc. 2017 Mar;12(3):506-518
pubmed: 28182017
Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88
pubmed: 2441961
Hum Brain Mapp. 2012 Jun;33(6):1393-406
pubmed: 21557387
Brain Connect. 2017 Dec;7(10):671-682
pubmed: 28938855
Neurobiol Aging. 2002 Jan-Feb;23(1):23-6
pubmed: 11755014
Neurosci Biobehav Rev. 2007;31(7):977-86
pubmed: 17445893
Neuroimage. 2010 Oct 1;52(4):1162-70
pubmed: 20188188
Clin Neurophysiol. 2005 Sep;116(9):2129-41
pubmed: 16043403
Neuroimage. 2018 Oct 15;180(Pt B):577-593
pubmed: 29196270
Neuroimage. 2012 Sep;62(3):2129-39
pubmed: 22658975
Neuron. 2014 Jul 2;83(1):238-51
pubmed: 24991964
Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Aug;7(8):814-823
pubmed: 34823049
Biol Psychiatry. 2020 Dec 1;88(11):818-828
pubmed: 32336400