The Electronic Disorder Landscape of Mixed Halide Perovskites.


Journal

ACS energy letters
ISSN: 2380-8195
Titre abrégé: ACS Energy Lett
Pays: United States
ID NLM: 101697523

Informations de publication

Date de publication:
13 Jan 2023
Historique:
received: 17 10 2022
accepted: 23 11 2022
entrez: 20 1 2023
pubmed: 21 1 2023
medline: 21 1 2023
Statut: epublish

Résumé

Band gap tunability of lead mixed halide perovskites makes them promising candidates for various applications in optoelectronics. Here we use the localization landscape theory to reveal that the static disorder due to iodide:bromide compositional alloying contributes at most 3 meV to the Urbach energy. Our modeling reveals that the reason for this small contribution is due to the small effective masses in perovskites, resulting in a natural length scale of around 20 nm for the "effective confining potential" for electrons and holes, with short-range potential fluctuations smoothed out. The increase in Urbach energy across the compositional range agrees well with our optical absorption measurements. We model systems of sizes up to 80 nm in three dimensions, allowing us to accurately reproduce the experimentally observed absorption spectra of perovskites with halide segregation. Our results suggest that we should look beyond static contribution and focus on the dynamic temperature dependent contribution to the Urbach energy.

Identifiants

pubmed: 36660372
doi: 10.1021/acsenergylett.2c02352
pmc: PMC9841609
doi:

Types de publication

Journal Article

Langues

eng

Pagination

250-258

Informations de copyright

© 2022 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Adv Sci (Weinh). 2015 Dec 07;3(6):1500301
pubmed: 27774406
Chem Sci. 2015 Jan 1;6(1):613-617
pubmed: 28706629
J Phys Chem C Nanomater Interfaces. 2021 Jul 15;125(27):15025-15034
pubmed: 34295448
J Phys Chem Lett. 2022 May 12;13(18):4184-4192
pubmed: 35511476
J Phys Chem Lett. 2021 Aug 19;12(32):7840-7845
pubmed: 34380314
Nano Lett. 2013 Apr 10;13(4):1764-9
pubmed: 23517331
Phys Rev Lett. 2016 Feb 5;116(5):056602
pubmed: 26894725
J Phys Chem Lett. 2022 Aug 11;13(31):7280-7285
pubmed: 35916775
Nano Lett. 2015 Jun 10;15(6):3692-6
pubmed: 25633588
Nano Lett. 2017 Feb 8;17(2):1028-1033
pubmed: 28134530
Phys Chem Chem Phys. 2020 Jun 7;22(21):11943-11955
pubmed: 32412023
Nat Commun. 2015 Apr 27;6:7026
pubmed: 25912782
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14761-6
pubmed: 22927384
J Phys Chem Lett. 2019 Mar 21;10(6):1368-1373
pubmed: 30838857
Phys Rev Lett. 2011 Jan 14;106(2):027401
pubmed: 21405249
Nat Nanotechnol. 2014 Sep;9(9):687-92
pubmed: 25086602
J Phys Chem Lett. 2014 Aug 7;5(15):2501-5
pubmed: 26277936
Nat Commun. 2017 Aug 4;8(1):200
pubmed: 28779144
Adv Mater. 2019 Oct;31(42):e1902374
pubmed: 31489713
Phys Rev Lett. 1991 Oct 14;67(16):2179-2182
pubmed: 10044359
Science. 2021 Dec 24;374(6575):1598-1605
pubmed: 34941391
Nat Nanotechnol. 2015 May;10(5):391-402
pubmed: 25947963
J Phys Chem Lett. 2014 Nov 6;5(21):3625-31
pubmed: 26278729
Nature. 2018 Jan 10;553(7687):189-193
pubmed: 29323292
ACS Energy Lett. 2020 Oct 9;5(10):3152-3158
pubmed: 33072865
Science. 2017 Nov 10;358(6364):739-744
pubmed: 29123060
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997
pubmed: 27478500
Chem Rev. 2020 Sep 23;120(18):9835-9950
pubmed: 32786417
Nat Commun. 2019 Jun 12;10(1):2560
pubmed: 31189871
Nat Commun. 2021 May 11;12(1):2687
pubmed: 33976203
J Phys Chem Lett. 2016 Mar 17;7(6):1083-7
pubmed: 26952337
J Phys Chem Lett. 2022 Aug 25;13(33):7702-7711
pubmed: 35960888
Phys Rev B Condens Matter. 1990 Nov 15;42(15):9622-9649
pubmed: 9995203
Nat Mater. 2021 Jan;20(1):10-21
pubmed: 32929252
J Phys Chem Lett. 2014 Mar 20;5(6):1035-9
pubmed: 26270984
Nat Commun. 2021 Jan 13;12(1):361
pubmed: 33441549
Adv Mater. 2018 Dec;30(52):e1803379
pubmed: 30370614

Auteurs

Yun Liu (Y)

Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom.

Jean-Philippe Banon (JP)

Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120Palaiseau, France.

Kyle Frohna (K)

Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom.

Yu-Hsien Chiang (YH)

Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom.

Ganbaatar Tumen-Ulzii (G)

Department of Chemical Engineering & Biotechnology, University of Cambridge, CambridgeCB3 0AS, United Kingdom.

Samuel D Stranks (SD)

Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom.
Department of Chemical Engineering & Biotechnology, University of Cambridge, CambridgeCB3 0AS, United Kingdom.

Marcel Filoche (M)

Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120Palaiseau, France.
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005Paris, France.

Richard H Friend (RH)

Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom.

Classifications MeSH