Effect of freezing and embalming of human cadaveric whole head specimens on bone conduction.

ASTM, American standard practice for describing system output in implantable middle ear hearing devices Abbreviations: AC, Air conduction BC, Bone conduction Baha, Bone anchored hearing aid CI, Confidence interval CT, Computed tomography LDV, Laser Doppler vibrometry RW, Round window

Journal

Hearing research
ISSN: 1878-5891
Titre abrégé: Hear Res
Pays: Netherlands
ID NLM: 7900445

Informations de publication

Date de publication:
01 03 2023
Historique:
received: 31 07 2022
revised: 23 12 2022
accepted: 12 01 2023
pubmed: 22 1 2023
medline: 15 2 2023
entrez: 21 1 2023
Statut: ppublish

Résumé

Conserved specimens do not decay and therefore permit long-term experiments thereby overcoming limited access to fresh (frozen) temporal bones for studies on middle ear mechanics. We used a Thiel conservation method which is mainly based on a watery solution of salts. In contrast to pure Formalin, Thiel conservation aims to preserve the mechanical proprieties of human tissue. The aim of this study is to examine the effect of Thiel conservation on bone conduction in the same specimen before and after conservation. Nine ears of five defrosted whole heads were stimulated with a direct, electrically driven, bone anchored hearing system (Baha, Baha SuperPower). The motion produced by bone conduction stimulation was measured with a single point laser Doppler vibrometer (LDV) at the promontory, the ossicular chain, and the round window through a posterior tympanotomy. After the initial experiments, the entire whole heads were placed in Thiel solution. In order to enable direct comparison between fresh frozen and Thiel specimens, our Thiel conservation did not include intravascular and intrathecal perfusion. The measurements were repeated 3 and 12 months later. To determine the effect of freezing, defrosting, and embalming on the whole heads, CT scans were performed at different stages of the experimental procedure. Additionally, three extracted temporal bones were stimulated a Baha, motion of the promontory measured by LDV and embalmed in Thiel solution to investigate the direct impact of Thiel solution on the bone. The averaged magnitude of motion on the promontory increased in whole head specimens by a mean of 10.3 dB after 3 months of Thiel embalming and stayed stable after 12 months. A similar effect was observed for motion at the tympanic membrane (+7.2 dB), the stapes (+9.5 dB), and the round window (+4.0 dB). In contrast to the whole head specimens, the motion of the extracted temporal bones did not change after 3 months of Thiel embalming (-0.04 dB in average). CT scans of the whole heads after conservation showed a notable brain volume loss mostly >50% as well as a remarkable change in the consistency and structure of the brain. Partial changes could already be observed before the Thiel embalming but after 1-2 days of defrosting. In an additional experiment, a substitution of brain mass and weight by Thiel fluid did not lead to new deterioration in sound transmission. In contrast, a frozen (non-defrosted) whole head showed a distinctively reduced magnitude of promontory motion before defrosting. For our setup, the vibration of the ear due to bone conduction in the same whole head specimens significantly increased after Thiel conservation. Such an increase was not observed in extracted temporal bone specimens. Due to brain changes in the CT scans, we investigated the consequences of the brain volume changes and structure loss on the frozen brain before defrosting. The loss of brain volume alone could not explain the increase of ear vibrations, as we did not observe a difference when the volume was replaced with Thiel fluid. However, freezing and defrosting of the entire brain seems to have a major influence. Beside the destructive effect of freezing on the brain, the modified conservation method without perfusion changed the brain structure. In conclusion, bone conduction in whole heads depends on the physical condition of the brain, rather than on the conservation.

Sections du résumé

BACKGROUND AND AIMS
Conserved specimens do not decay and therefore permit long-term experiments thereby overcoming limited access to fresh (frozen) temporal bones for studies on middle ear mechanics. We used a Thiel conservation method which is mainly based on a watery solution of salts. In contrast to pure Formalin, Thiel conservation aims to preserve the mechanical proprieties of human tissue. The aim of this study is to examine the effect of Thiel conservation on bone conduction in the same specimen before and after conservation.
METHODS
Nine ears of five defrosted whole heads were stimulated with a direct, electrically driven, bone anchored hearing system (Baha, Baha SuperPower). The motion produced by bone conduction stimulation was measured with a single point laser Doppler vibrometer (LDV) at the promontory, the ossicular chain, and the round window through a posterior tympanotomy. After the initial experiments, the entire whole heads were placed in Thiel solution. In order to enable direct comparison between fresh frozen and Thiel specimens, our Thiel conservation did not include intravascular and intrathecal perfusion. The measurements were repeated 3 and 12 months later. To determine the effect of freezing, defrosting, and embalming on the whole heads, CT scans were performed at different stages of the experimental procedure. Additionally, three extracted temporal bones were stimulated a Baha, motion of the promontory measured by LDV and embalmed in Thiel solution to investigate the direct impact of Thiel solution on the bone.
RESULTS
The averaged magnitude of motion on the promontory increased in whole head specimens by a mean of 10.3 dB after 3 months of Thiel embalming and stayed stable after 12 months. A similar effect was observed for motion at the tympanic membrane (+7.2 dB), the stapes (+9.5 dB), and the round window (+4.0 dB). In contrast to the whole head specimens, the motion of the extracted temporal bones did not change after 3 months of Thiel embalming (-0.04 dB in average). CT scans of the whole heads after conservation showed a notable brain volume loss mostly >50% as well as a remarkable change in the consistency and structure of the brain. Partial changes could already be observed before the Thiel embalming but after 1-2 days of defrosting. In an additional experiment, a substitution of brain mass and weight by Thiel fluid did not lead to new deterioration in sound transmission. In contrast, a frozen (non-defrosted) whole head showed a distinctively reduced magnitude of promontory motion before defrosting.
DISCUSSION
For our setup, the vibration of the ear due to bone conduction in the same whole head specimens significantly increased after Thiel conservation. Such an increase was not observed in extracted temporal bone specimens. Due to brain changes in the CT scans, we investigated the consequences of the brain volume changes and structure loss on the frozen brain before defrosting. The loss of brain volume alone could not explain the increase of ear vibrations, as we did not observe a difference when the volume was replaced with Thiel fluid. However, freezing and defrosting of the entire brain seems to have a major influence. Beside the destructive effect of freezing on the brain, the modified conservation method without perfusion changed the brain structure. In conclusion, bone conduction in whole heads depends on the physical condition of the brain, rather than on the conservation.

Identifiants

pubmed: 36680872
pii: S0378-5955(23)00012-6
doi: 10.1016/j.heares.2023.108700
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

108700

Informations de copyright

Copyright © 2023. Published by Elsevier B.V.

Déclaration de conflit d'intérêts

Declaration of Competing Interest None.

Auteurs

Lukas Graf (L)

Department of ORL, University Hospital Basel, Hebelstrasse 10, Basel CH-4031, Switzerland.

Andreas Arnold (A)

Department of ORL, Spital Münsingen, Inselspital Bern and University of Bern, Switzerland.

Sandra Blache (S)

Department of Anatomy, University of Basel, Switzerland.

Flurin Honegger (F)

Department of ORL, University Hospital Basel, Hebelstrasse 10, Basel CH-4031, Switzerland.

Magdalena Müller-Gerbl (M)

Department of Anatomy, University of Basel, Switzerland.

Christof Stieger (C)

Department of ORL, University Hospital Basel, Hebelstrasse 10, Basel CH-4031, Switzerland. Electronic address: christof.stieger@usb.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH