Rational and design of the REMOTE trial: An exploratory, pilot study to analyze REtinal MicrOcirculaTion in wEightlessness.
Microgravity
dynamic vessel analyzer
parabolic flight campaign
retinal microcirculation
spaceflight associated neuro-ocular syndrome
Journal
Clinical hemorheology and microcirculation
ISSN: 1875-8622
Titre abrégé: Clin Hemorheol Microcirc
Pays: Netherlands
ID NLM: 9709206
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
26
9
2023
pubmed:
24
1
2023
entrez:
23
1
2023
Statut:
ppublish
Résumé
"Spaceflight associated neuro-ocular syndrome" (SANS) represents a challenging health condition in modern space medicine. Forty-eight percent of astronauts are diagnosed with SANS after long-term space missions. The pathophysiological mechanism seems to be multifactorial, and yet remains unknown. In this proof-of-concept study we plan to investigate retinal microcirculatory changes in weightlessness and aim to identify their role in the development of SANS. Healthy individuals will take part in a parabolic flight campaign, which recreates fractioned total weightlessness periods. The airplane is specifically equipped, and designed for the execution of parabolic flight maneuvers and scientific research in microgravity. Retinal microcirculation will be assessed with a modified fundus camera, which allows dynamic vessel analysis. We will additionally measure intra-ocular pressure and hemodynamic changes during each phase of the flight. Blood samples will be analyzed at baseline, one hour and 24 hours after exposure to weightlessness. This pilot study aims to investigate the feasibility of retinal microcirculation assessment during varying gravity. Results of this study may generate insights whether venous stasis in the eye, surrogated by the dilatation of retinal vessels and increase in intraocular pressure as signs of venous insufficiency, may potentially contribute to the development of SANS.
Sections du résumé
BACKGROUND
BACKGROUND
"Spaceflight associated neuro-ocular syndrome" (SANS) represents a challenging health condition in modern space medicine. Forty-eight percent of astronauts are diagnosed with SANS after long-term space missions. The pathophysiological mechanism seems to be multifactorial, and yet remains unknown. In this proof-of-concept study we plan to investigate retinal microcirculatory changes in weightlessness and aim to identify their role in the development of SANS.
METHODS AND DESIGN
METHODS
Healthy individuals will take part in a parabolic flight campaign, which recreates fractioned total weightlessness periods. The airplane is specifically equipped, and designed for the execution of parabolic flight maneuvers and scientific research in microgravity. Retinal microcirculation will be assessed with a modified fundus camera, which allows dynamic vessel analysis. We will additionally measure intra-ocular pressure and hemodynamic changes during each phase of the flight. Blood samples will be analyzed at baseline, one hour and 24 hours after exposure to weightlessness.
CONCLUSIONS
CONCLUSIONS
This pilot study aims to investigate the feasibility of retinal microcirculation assessment during varying gravity. Results of this study may generate insights whether venous stasis in the eye, surrogated by the dilatation of retinal vessels and increase in intraocular pressure as signs of venous insufficiency, may potentially contribute to the development of SANS.
Identifiants
pubmed: 36683506
pii: CH221691
doi: 10.3233/CH-221691
doi:
Types de publication
Clinical Trial
Journal Article
Langues
eng
Sous-ensembles de citation
IM