Maternal body condition and season influence RNA deposition in the oocytes of alfalfa leafcutting bees (
development
diapause
maternal RNA
maternal effects
maternal-to-zygotic transition
microRNA
oogenesis
photoperiod
Journal
Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621
Informations de publication
Date de publication:
2022
2022
Historique:
received:
08
10
2022
accepted:
28
11
2022
entrez:
23
1
2023
pubmed:
24
1
2023
medline:
24
1
2023
Statut:
epublish
Résumé
Maternal effects are an important source of phenotypic variance, whereby females influence offspring developmental trajectory beyond direct genetic contributions, often in response to changing environmental conditions. However, relatively little is known about the mechanisms by which maternal experience is translated into molecular signals that shape offspring development. One such signal may be maternal RNA transcripts (mRNAs and miRNAs) deposited into maturing oocytes. These regulate the earliest stages of development of all animals, but are understudied in most insects. Here we investigated the effects of female internal (body condition) and external (time of season) environmental conditions on maternal RNA in the maturing oocytes and 24-h-old eggs (24-h eggs) of alfalfa leafcutting bees. Using gene expression and WGCNA analysis, we found that females adjust the quantity of mRNAs related to protein phosphorylation, transcriptional regulation, and nuclease activity deposited into maturing oocytes in response to both poor body condition and shorter day lengths that accompany the late season. However, the magnitude of these changes was higher for time of season. Females also adjusted miRNA deposition in response to seasonal changes, but not body condition. We did not observe significant changes in maternal RNAs in response to either body condition or time of season in 24-h eggs, which were past the maternal-to-zygotic transition. Our results suggest that females adjust the RNA transcripts they provide for offspring to regulate development in response to both internal and external environmental cues. Variation in maternal RNAs may, therefore, be important for regulating offspring phenotype in response to environmental change.
Identifiants
pubmed: 36685934
doi: 10.3389/fgene.2022.1064332
pii: 1064332
pmc: PMC9845908
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1064332Informations de copyright
Copyright © 2023 Hagadorn, Hunter, DeLory, Johnson, Pitts-Singer and Kapheim.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Environ Entomol. 2020 Apr 14;49(2):516-527
pubmed: 31961923
G3 (Bethesda). 2015 Aug 24;5(10):2199-207
pubmed: 26306531
F1000Res. 2020 Dec 10;9:1444
pubmed: 33604029
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Cell Physiol Biochem. 2015;35(5):1706-18
pubmed: 25833742
Ecotoxicol Environ Saf. 2014 Dec;110:1-7
pubmed: 25173847
J Evol Biol. 2007 Nov;20(6):2379-88
pubmed: 17956399
Genome Res. 2016 Jan;26(1):85-96
pubmed: 26518483
Curr Biol. 2013 Jan 21;23(2):133-8
pubmed: 23290555
Front Behav Neurosci. 2022 Apr 25;16:778264
pubmed: 35548691
J Exp Biol. 2011 Jul 15;214(Pt 14):2329-36
pubmed: 21697424
Cold Spring Harb Symp Quant Biol. 2008;73:89-100
pubmed: 19204068
Genes Dev. 2007 Mar 15;21(6):644-8
pubmed: 17369397
Insect Sci. 2018 Dec;25(6):1080-1088
pubmed: 28618174
FEBS Lett. 2018 Sep;592(17):3007-3023
pubmed: 29972882
Development. 2013 Jul;140(13):2703-10
pubmed: 23720042
Annu Rev Neurosci. 2001;24:1161-92
pubmed: 11520931
J Exp Biol. 2017 Oct 15;220(Pt 20):3794-3801
pubmed: 28821570
Annu Rev Entomol. 2002;47:93-122
pubmed: 11729070
Protein Sci. 2022 Jan;31(1):8-22
pubmed: 34717010
BMC Evol Biol. 2018 Mar 22;18(1):34
pubmed: 29566669
BMC Genomics. 2011 Dec 20;12:619
pubmed: 22185595
J Insect Physiol. 1997 Aug;43(8):709-717
pubmed: 12770449
J Insect Physiol. 2020 Feb - Mar;121:104001
pubmed: 31874137
Insect Mol Biol. 2017 Dec;26(6):721-733
pubmed: 28776797
Annu Rev Cell Dev Biol. 2014;30:581-613
pubmed: 25150012
Am Nat. 2020 Oct;196(4):487-500
pubmed: 32970461
Cell. 1992 Jul 10;70(1):163-76
pubmed: 1623520
J Exp Biol. 2018 Jul 6;221(Pt 13):
pubmed: 29748214
Development. 2001 Jan;128(2):167-80
pubmed: 11124113
Bioinformatics. 2014 May 1;30(9):1236-40
pubmed: 24451626
PLoS One. 2021 Aug 3;16(8):e0254651
pubmed: 34343176
Science. 2015 Jun 5;348(6239):1139-43
pubmed: 25977371
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Nucleic Acids Res. 2012 Jan;40(1):37-52
pubmed: 21911355
Development. 2019 Jun 12;146(11):
pubmed: 31189646
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12023-8
pubmed: 16099838
Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1647-64
pubmed: 22566673
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Front Neuroendocrinol. 2021 Jul;62:100924
pubmed: 33992652
J Insect Physiol. 2014 Dec;71:87-96
pubmed: 25450563
Curr Biol. 2008 Apr 8;18(7):501-6
pubmed: 18394895
Proc Biol Sci. 2005 Dec 22;272(1581):2601-7
pubmed: 16321782
Evodevo. 2017 Apr 21;8:6
pubmed: 28439397
Proc Biol Sci. 2013 Mar 20;280(1759):20130143
pubmed: 23516243
Philos Trans R Soc Lond B Biol Sci. 2019 Apr 15;374(1770):20180115
pubmed: 30966885
R Soc Open Sci. 2018 Jul 18;5(7):180539
pubmed: 30109101
Cell. 1993 Mar 12;72(5):649-51
pubmed: 8453660
PLoS One. 2016 Jan 11;11(1):e0146447
pubmed: 26751956
Int J Mol Sci. 2019 Apr 23;20(8):
pubmed: 31018489
Philos Trans R Soc Lond B Biol Sci. 2009 Apr 27;364(1520):1107-15
pubmed: 19324615
Elife. 2019 Oct 31;8:
pubmed: 31670659
Mol Biol Evol. 2022 Jun 09;:
pubmed: 35679434
Environ Entomol. 2017 Oct 1;46(5):1070-1079
pubmed: 28981639
Sci Rep. 2020 Nov 12;10(1):19737
pubmed: 33184454
Philos Trans R Soc Lond B Biol Sci. 2008 May 12;363(1497):1647-61
pubmed: 18048291
BMC Genomics. 2013 Nov 06;14:762
pubmed: 24195446
PLoS One. 2016 Jan 22;11(1):e0147151
pubmed: 26799215
Bioinformatics. 2016 Oct 1;32(19):3047-8
pubmed: 27312411
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):
pubmed: 34507981
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Evolution. 1980 Sep;34(5):993-1003
pubmed: 28581134
Mol Ecol. 2015 Nov;24(22):5596-615
pubmed: 26453894
Gen Comp Endocrinol. 2017 May 1;245:55-68
pubmed: 27013380
Cell. 1994 Apr 22;77(2):183-94
pubmed: 8168128
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Oecologia. 2006 Jan;146(4):513-20
pubmed: 16133190
PLoS One. 2012;7(5):e37235
pubmed: 22629374
Proc Biol Sci. 2013 Sep 07;280(1766):20131225
pubmed: 23843390
J Mol Biol. 2001 Nov 2;313(4):903-19
pubmed: 11697912
Evodevo. 2018 Dec 01;9:23
pubmed: 30519389
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419
pubmed: 33125078
Development. 2009 Sep;136(18):3033-42
pubmed: 19700615
Nature. 2000 Oct 12;407(6805):693-4
pubmed: 11048707
Anim Behav. 1999 Nov;58(5):1105-1108
pubmed: 10564613
J Econ Entomol. 2010 Apr;103(2):234-41
pubmed: 20429433
Curr Top Dev Biol. 2015;113:43-84
pubmed: 26358870
Cell. 1987 Dec 4;51(5):861-7
pubmed: 3479264
Exp Biol. 1986;46(1):51-8
pubmed: 3817113
EMBO J. 1999 May 4;18(9):2610-20
pubmed: 10228172
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
F1000Res. 2016 Jun 17;5:1408
pubmed: 27441086
BMC Genomics. 2018 Apr 27;19(1):305
pubmed: 29703143
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4
pubmed: 16845047
Nat Rev Genet. 2011 Feb;12(2):136-49
pubmed: 21245830
R Soc Open Sci. 2020 Jul 8;7(7):200517
pubmed: 32874647
RNA. 2003 Mar;9(3):277-9
pubmed: 12592000
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4
pubmed: 16381832
Genome Biol. 2003;5(1):R1
pubmed: 14709173
Annu Rev Entomol. 2011;56:221-37
pubmed: 20809804