Data-driven color augmentation for H&E stained images in computational pathology.
Color augmentation
Computational pathology
Deep learning
Digital pathology
Histopathology
Stain variability
Journal
Journal of pathology informatics
ISSN: 2229-5089
Titre abrégé: J Pathol Inform
Pays: United States
ID NLM: 101528849
Informations de publication
Date de publication:
2023
2023
Historique:
received:
11
10
2022
revised:
28
11
2022
accepted:
28
12
2022
entrez:
23
1
2023
pubmed:
24
1
2023
medline:
24
1
2023
Statut:
epublish
Résumé
Computational pathology targets the automatic analysis of Whole Slide Images (WSI). WSIs are high-resolution digitized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via whole slide scanners. The application of different parameters during WSI acquisition may lead to stain color heterogeneity, especially considering samples collected from several medical centers. Dealing with stain color heterogeneity often limits the robustness of methods developed to analyze WSIs, in particular Convolutional Neural Networks (CNN), the state-of-the-art algorithm for most computational pathology tasks. Stain color heterogeneity is still an unsolved problem, although several methods have been developed to alleviate it, such as Hue-Saturation-Contrast (HSC) color augmentation and stain augmentation methods. The goal of this paper is to present Data-Driven Color Augmentation (DDCA), a method to improve the efficiency of color augmentation methods by increasing the reliability of the samples used for training computational pathology models. During CNN training, a database including over 2 million H&E color variations collected from private and public datasets is used as a reference to discard augmented data with color distributions that do not correspond to realistic data. DDCA is applied to HSC color augmentation, stain augmentation and H&E-adversarial networks in colon and prostate cancer classification tasks. DDCA is then compared with 11 state-of-the-art baseline methods to handle color heterogeneity, showing that it can substantially improve classification performance on unseen data including heterogeneous color variations.
Identifiants
pubmed: 36687531
doi: 10.1016/j.jpi.2022.100183
pii: S2153-3539(22)00783-0
pmc: PMC9852546
doi:
Types de publication
Journal Article
Langues
eng
Pagination
100183Informations de copyright
© 2022 The Authors.
Déclaration de conflit d'intérêts
The authors declare that there are no competing interests.
Références
J Natl Compr Canc Netw. 2018 Apr;16(4):359-369
pubmed: 29632055
IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78
pubmed: 25993703
IEEE J Biomed Health Inform. 2020 May;24(5):1413-1426
pubmed: 31567104
Med Image Anal. 2022 Nov;82:102580
pubmed: 36113326
Med Image Comput Comput Assist Interv. 2018 Sep;11071:201-209
pubmed: 30465047
Histopathology. 2017 Jan;70(2):153-163
pubmed: 27607349
BioData Min. 2017 Dec 8;10:35
pubmed: 29234465
JCO Clin Cancer Inform. 2019 Apr;3:1-7
pubmed: 30990737
Biochem Med (Zagreb). 2012;22(3):276-82
pubmed: 23092060
IEEE Rev Biomed Eng. 2009;2:147-71
pubmed: 20671804
Methods Mol Biol. 2014;1180:31-43
pubmed: 25015141
World J Oncol. 2019 Apr;10(2):63-89
pubmed: 31068988
Med Image Anal. 2019 Dec;58:101544
pubmed: 31466046
Med Image Anal. 2021 Oct;73:102165
pubmed: 34303169
Front Bioeng Biotechnol. 2019 Aug 23;7:198
pubmed: 31508414
Glob J Health Sci. 2015 Jun 25;8(3):72-9
pubmed: 26493433
J Pathol Inform. 2022 Jul 25;13:100127
pubmed: 36268105
JAMA Netw Open. 2021 Apr 1;4(4):e214708
pubmed: 33825840
Arch Pathol Lab Med. 2009 Nov;133(11):1810-6
pubmed: 19886716
J Pathol Inform. 2011;2:36
pubmed: 21886892
NPJ Digit Med. 2022 Jul 22;5(1):102
pubmed: 35869179
Nat Med. 2021 May;27(5):775-784
pubmed: 33990804
Nat Med. 2019 Aug;25(8):1301-1309
pubmed: 31308507
CSH Protoc. 2008 May 01;2008:pdb.prot4986
pubmed: 21356829
Clin Diagn Pathol. 2020 Sep;4(1):
pubmed: 33088926
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8533-8542
pubmed: 34025103
Sci Rep. 2017 Dec 4;7(1):16852
pubmed: 29203775
Methods. 2014 Nov;70(1):12-9
pubmed: 24561827
IEEE Trans Med Imaging. 2016 Aug;35(8):1962-71
pubmed: 27164577
J Pathol Inform. 2022 Sep 15;13:100139
pubmed: 36268087
Comput Methods Programs Biomed. 2020 Oct;195:105637
pubmed: 32653747
Sensors (Basel). 2021 Feb 05;21(4):
pubmed: 33562753
IEEE J Biomed Health Inform. 2021 Feb;25(2):325-336
pubmed: 33085623
Front Med (Lausanne). 2021 Nov 05;8:746307
pubmed: 34805215
J Pathol Inform. 2016 Jul 26;7:29
pubmed: 27563488
Gigascience. 2018 Jun 1;7(6):
pubmed: 29860392
Mod Pathol. 2020 Nov;33(11):2115-2127
pubmed: 32572154
Sci Rep. 2021 Jul 13;11(1):14358
pubmed: 34257363
Front Med (Lausanne). 2019 Jul 16;6:162
pubmed: 31380377
Nat Med. 2022 Jan;28(1):154-163
pubmed: 35027755
J Digit Imaging. 2021 Feb;34(1):105-115
pubmed: 33169211
Int J Surg Pathol. 2014 Feb;22(1):12-32
pubmed: 24406626
Sci Rep. 2018 Aug 13;8(1):12054
pubmed: 30104757
Gigascience. 2022 Jun 14;11:
pubmed: 35701372