Selection of IS6110 conserved regions for the detection of Mycobacterium tuberculosis using qPCR and LAMP.
IS6110
Isothermal amplification
Loop-mediated isothermal amplification (LAMP)
Mycobacterium tuberculosis
Real-time PCR
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
23 Jan 2023
23 Jan 2023
Historique:
received:
24
08
2022
accepted:
09
01
2023
revised:
27
11
2022
entrez:
23
1
2023
pubmed:
24
1
2023
medline:
26
1
2023
Statut:
epublish
Résumé
IS6110 insertion sequence is a frequently used target for Mycobacterium tuberculosis detection. However, its sequence variability is studied insufficiently. We aimed to identify the most conservative and variable regions in IS6110 sequences and develop qPCR and LAMP oligonucleotide sets for the conservative regions. Using in-house Python scripts, 3609 M. tuberculosis genome sequences from the NCBI database were aligned; conservative regions were identified to design oligonucleotide sets. IS6110 fragments located within the 31-231 bp region were the most conservative and represented in genomes and were used to design qPCR and LAMP oligonucleotides. The in silico sensitivity of the qPCR oligonucleotides on the whole genome set was 99.1% and 98.4%. For the LAMP primers developed, the sensitivity was 96.9%. For qPCR, the limit of detection with 95% confidence (LoD
Identifiants
pubmed: 36688992
doi: 10.1007/s00203-023-03410-5
pii: 10.1007/s00203-023-03410-5
doi:
Substances chimiques
BCG Vaccine
0
DNA Primers
0
DNA, Bacterial
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
71Subventions
Organisme : Russian State Budget Funding Project of ICBFM SB RAS
ID : 121031300056-8
Organisme : Russian State Budget Funding Project of ICBFM SB RAS
ID : 121031300056-8
Organisme : Russian State Budget Funding Project of ICBFM SB RAS
ID : 121031300056-8
Organisme : Russian State Budget Funding Project of ICBFM SB RAS
ID : 121031300056-8
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aldous WK, Pounder JI, Cloud JL, Woods GL (2005) Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. J Clin Microbiol 43:2471–2473. https://doi.org/10.1128/JCM.43.5.2471-2473.2005
doi: 10.1128/JCM.43.5.2471-2473.2005
Aryan E, Makvandi M, Farajzadeh A et al (2010) A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165:211–220. https://doi.org/10.1016/j.micres.2009.05.001
doi: 10.1016/j.micres.2009.05.001
Bentaleb EM, Abid M, El Messaoudi MD et al (2016) Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infect Dis 16:1–10. https://doi.org/10.1186/s12879-016-1864-9
doi: 10.1186/s12879-016-1864-9
Boddinghaus B, Rogall T, Flohr T et al (1990) Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 28:1751–1759. https://doi.org/10.1128/jcm.28.8.1751-1759.1990
doi: 10.1128/jcm.28.8.1751-1759.1990
Campelo TA, de Sousa PRC, de Nogueira L et al (2021) Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 3:245. https://doi.org/10.1099/ACMI.0.000245
doi: 10.1099/ACMI.0.000245
Cave MD, Eisenach KD, McDermott PF et al (1991) IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 5:73–80. https://doi.org/10.1016/0890-8508(91)90040-q
doi: 10.1016/0890-8508(91)90040-q
Chakravorty S, Simmons AM, Rowneki M et al (2017) The new Xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. Mbio. https://doi.org/10.1128/mBio.00812-17
doi: 10.1128/mBio.00812-17
Coll F, McNerney R, Guerra-Assunção JA et al (2014) A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. https://doi.org/10.1038/ncomms5812
doi: 10.1038/ncomms5812
Dale JW, Tang TH, Wall S et al (1997) Conservation of IS6110 sequence in strains of Mycobacterium tuberculosis with single and multiple copies. Tuber Lung Dis 78:225–227. https://doi.org/10.1016/S0962-8479(97)90002-2
doi: 10.1016/S0962-8479(97)90002-2
Desikan S, Narayanan S (2015) Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis. Indian J Med Res 142:761–774. https://doi.org/10.4103/0971-5916.160695
doi: 10.4103/0971-5916.160695
Eisenach KD, Cave MD, Bates JH, Crawford JT (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161:977–981. https://doi.org/10.1093/infdis/161.5.977
doi: 10.1093/infdis/161.5.977
Forootan A, Sjöback R, Björkman J et al (2017) Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif 12:1–6. https://doi.org/10.1016/j.bdq.2017.04.001
doi: 10.1016/j.bdq.2017.04.001
Gómez-González PJ, Perdigao J, Gomes P et al (2021) (2021) Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-98862-4
doi: 10.1038/s41598-021-98862-4
Käser M, Ruf MT, Hauser J et al (2009) Optimized method for preparation of DNA from pathogenic and environmental mycobacteria. Appl Environ Microbiol 75:414. https://doi.org/10.1128/AEM.01358-08
doi: 10.1128/AEM.01358-08
Kirchner S, Fothergill JL, Wright EA et al (2012) Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J vis Exp. https://doi.org/10.3791/3857
doi: 10.3791/3857
Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12
doi: 10.1186/gb-2004-5-2-r12
Leung ETY, Zheng L, Wong RYK et al (2011) Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W Genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR. J Clin Microbiol 49:2509–2515. https://doi.org/10.1128/JCM.00108-11
doi: 10.1128/JCM.00108-11
Lok KH, Benjamin WH, Kimerling ME et al (2002) Molecular differentiation of Mycobacterium tuberculosis strains without IS6110 insertions. Emerg Infect Dis 8:1310–1313. https://doi.org/10.3201/eid0811.020291
doi: 10.3201/eid0811.020291
O’Shea MK, Koh GCKW, Munang M et al (2014) Time-to-detection in culture predicts risk of Mycobacterium tuberculosis transmission: a cohort study. Clin Infect Dis 59:177–185. https://doi.org/10.1093/CID/CIU244
doi: 10.1093/CID/CIU244
Oscorbin IP, Boyarskikh UA, Filipenko ML (2015) Large fragment of DNA polymerase I from Geobacillus sp. 777: Cloning and comparison with DNA polymerases I in practical applications. Mol Biotechnol 57:947–959. https://doi.org/10.1007/s12033-015-9886-x
doi: 10.1007/s12033-015-9886-x
Oscorbin IP, Belousova EA, Zakabunin AI et al (2016) Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP). Biotechniques 61:20–25. https://doi.org/10.2144/000114432
doi: 10.2144/000114432
Prescott SC, Breed RS (1910) The determination of the number of body cells in milk by a direct method. Am J Pub Hyg 20:663–664
Qin L, Gao S, Wang J et al (2013) The conservation and application of three hypothetical protein coding gene for direct detection of Mycobacterium tuberculosis in sputum specimens. PLoS ONE 8:e73955. https://doi.org/10.1371/journal.pone.0073955
doi: 10.1371/journal.pone.0073955
Reyes A, Sandoval A, Cubillos-Ruiz A et al (2012) IS-seq: a novel high throughput survey of in vivo IS6110 transposition in multiple Mycobacterium tuberculosis genomes. BMC Genom 13:1–15. https://doi.org/10.1186/1471-2164-13-249/FIGURES/3
doi: 10.1186/1471-2164-13-249/FIGURES/3
Roychowdhury T, Mandal S, Bhattacharya A (2015) Analysis of IS6110 insertion sites provide a glimpse into genome evolution of Mycobacterium tuberculosis. Sci Rep. https://doi.org/10.1038/srep12567
doi: 10.1038/srep12567
Sankar S, Kuppanan S, Balakrishnan B, Nandagopal B (2011) Analysis of sequence diversity among IS6110 sequence of Mycobacterium tuberculosis: possible implications for PCR based detection. Bioinformation 6:283–285. https://doi.org/10.6026/97320630006283
doi: 10.6026/97320630006283
Thierry D, Brisson-Noël A, Vincent-Lévy-Frébault V et al (1990) Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 28:2668–2673. https://doi.org/10.1128/jcm.28.12.2668-2673.1990
doi: 10.1128/jcm.28.12.2668-2673.1990
Wang H-Y, Lu J-J, Chang C-Y et al (2019) Development of a high sensitivity TaqMan-based PCR assay for the specific detection of Mycobacterium tuberculosis complex in both pulmonary and extrapulmonary specimens. Sci Rep 9:113. https://doi.org/10.1038/s41598-018-33804-1
doi: 10.1038/s41598-018-33804-1
WHO (2021) Global Tuberculosis Report. World Health Organization, Geneva