Nondestructive characterization of diseased Chinese chive leaves using X-ray intensity ratios with microbeam synchrotron radiation X-ray fluorescence spectrometry.

Chinese chive leaves Inductively coupled plasma-optical emission spectroscopy Microbeam synchrotron radiation X-ray fluorescence Necrotic streak disease Nondestructive imaging Physiological disorders

Journal

Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 09 10 2022
accepted: 21 12 2022
medline: 31 3 2023
pubmed: 24 1 2023
entrez: 23 1 2023
Statut: ppublish

Résumé

The Chinese chive (Allium tuberosum) is a core crop grown in Kochi Prefecture, Japan. However, withering symptoms occur during greenhouse growing, which have a negative impact on crop management Chinese chive leaves with physiological disorders (PD) or necrotic streak disease (ND) present with withering as typical blight symptoms. Excess or deficiency of elements may cause such withering in Chinese chive leaves with PD. Therefore, visualizing the elemental distribution in plant bodies may help clarify the cause of this withering. In this study, using synchrotron radiation X-ray fluorescence (SR-XRF) imaging, we examined the elemental distribution conditions in healthy Chinese chive leaves without withering, those that withered due to PD, and those that withered due to ND. Segmentation analysis of inductively coupled plasma-optical emission spectroscopy (ICP-OES) was performed on the SR-XRF imaged Chinese chive leaves and the data from the two analytical methods were compared. SR-XRF imaging provided more detailed data on elemental distribution compared with segmentation analysis using ICP-OES. Based on the SR-XRF imaging results, the X-ray intensity ratios for Ca/K, Fe/Mn, and Zn/Cu were calculated. These findings support that the Ca/K, Fe/Mn, and Zn/Cu X-ray intensity ratios can be used in the early detection of withered leaves and to predict the factors causing withering.

Identifiants

pubmed: 36689087
doi: 10.1007/s44211-022-00257-6
pii: 10.1007/s44211-022-00257-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

493-501

Informations de copyright

© 2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.

Références

S. Morinaga, M. Okabayashi, Effects of inorganic on leaf-tip wilting of Chinese chives 1. Nutrient deficiency symptoms and inorganic components of hydroponics solutions. Bull. Kochi Agric. Res. Cent. 22, 21–32 (2013)
S. Morinaga, M. Okabayashi, Effects of inorganic on leaf-tip wilting of Chinese chives 2. Nutrient deficiency symptoms and inorganic components of hydroponics solutions. Bull. Kochi Agric. Res. Cent. 22, 33–47 (2013)
Y. Yasuoka, S. Itokawa, Y. Hayami, E. Wada, I. Hashimoto, Factors inducing leaf tip burn on Chinese chive cultivated during the winter. Bull. Kochi Agric. Res. Cent. 29, 15–24 (2020)
K. Ooshima, Y. Nihei, Y. Saito, R. Sato, T. Matsumoto, Elucidation of the cause for Chinese chive leaf tip-burn. Bull. Tochigi Agric. Exp. Stn. 73, 11–20 (2015)
T. Fukuda, K. Nakayama, Y. Honda, Necrotic streak disease of Chinese chive caused by iris yellow spot virus (IYSV). Jpn. J. Phytopathol. 73, 311–313 (2007). https://doi.org/10.3186/jjphytopath.73.311
doi: 10.3186/jjphytopath.73.311
A.E. Whitfield, D.E. Ullman, T.L. German, Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43, 459–489 (2005). https://doi.org/10.1146/annurev.phyto.43.040204.140017
doi: 10.1146/annurev.phyto.43.040204.140017 pubmed: 16078892
M. Morishima, T. Fukuda, T. Waki, Seasonal occurrence of Thrips tabaci (Lindeman) and the incidence of necrotic streak disease caused by iris yellow spot virus (IYSV) on Chinese chive Allium tuberosum. Jpn. J. Appl. Entomol. Zool. 56, 95–101 (2012). https://doi.org/10.1303/jjaez.2012.95
doi: 10.1303/jjaez.2012.95
G.G. De Arantes Carvalho, M.G. Bueno Guerra, A. Adame, C.S. Nomura, P.V. Oliveira, H.W. De Pereira Carvalho, D. Santos, L.C. Nunes, F.J. Krug, Recent advances in LIBS and XRF for the analysis of plants. J. Anal. At. Spectrom. 33(6), 911–1094 (2018). https://doi.org/10.1039/C7JA00293A
doi: 10.1039/C7JA00293A
H. Mekata, Diagnosing bovine leukemia virus infection. Jpn. J. Large Anim. Clin. 6, 221–226 (2016). https://doi.org/10.4190/jjlac.6.221
doi: 10.4190/jjlac.6.221
W. Yamaoka, S. Takada, H. Takehisa, Y. Hayashi, A. Hokura, Y. Terada, T. Abe, I. Nakai, Study on accumulation mechanism of cadmium in rice (Oriza sativa L.) by micro-XRF imaging and X-ray absorption fine structure analysis utilizing synchrotron radiation. Jpn. Soc. Anal. Chem. 59(6), 463–475 (2010). https://doi.org/10.2116/bunsekikagaku.59.463
doi: 10.2116/bunsekikagaku.59.463
Z. Chen, Y. Fujii, N. Yamaji, S. Masuda, Y. Takemoto, T. Kamiya, Y. Yusuyin, K. Iwasaki, S. Kato, M. Maeshima, J.F. Ma, D. Ueno, Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J. Exp. Bot. 64(14), 4375–4387 (2013). https://doi.org/10.1093/jxb/ert243
doi: 10.1093/jxb/ert243 pubmed: 23963678 pmcid: 3808320
P.G. Smith, I. Koch, R.A. Gordon, D.F. Mandoli, B.D. Chapman, K.J. Reimer, X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ. Sci. Technol. 39(1), 248–254 (2005). https://doi.org/10.1021/es049358b
doi: 10.1021/es049358b pubmed: 15667101
E. Lombi, K.G. Scheckel, I.M. Kempson, In situ analysis of metal (Loid)s in plants: state of the art and artefacts. Environ. Exp. Bot. 72, 3–17 (2011). https://doi.org/10.1016/j.envexpbot.2010.04.005
doi: 10.1016/j.envexpbot.2010.04.005
L. Lu, S. Tian, J. Zhang, X. Yang, J.M. Labavitch, S.M. Webb, M. Latimer, P.H. Brown, Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol. 198, 721–731 (2013). https://doi.org/10.1111/nph.12168
doi: 10.1111/nph.12168 pubmed: 23421478
L. Krajcarová, K. Novotný, M. Kummerová, J. Dubová, V. Gloser, J. Kaiser, Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS). Int. J. Pure Appl. Anal. Chem. 173, 28–35 (2017). https://doi.org/10.1016/j.talanta.2017.05.055
doi: 10.1016/j.talanta.2017.05.055
A.B. Mohammad, S.H.K. Mohammad, M.K. Mohammad, A.S. Khan, M.S. Al-Hajjaj, Quantification of trace elements in different Dokha and Shisha tobacco products using EDXRF. J. Anal. Toxicol. 43, e7–e22 (2019). https://doi.org/10.1093/jat/bky095
doi: 10.1093/jat/bky095 pubmed: 30462216
J. Trebolazabala, M. Maguregui, H. Morillas, A.D. Diego, J.M. Madariaga, Evaluation of metals distribution in Solanum lycopersicum plants located in a coastal environment using micro-energy dispersive X-ray fluorescence imaging. Microchem. J. 131, 137–144 (2017). https://doi.org/10.1016/j.microc.2016.12.009
doi: 10.1016/j.microc.2016.12.009
H. Komatsu, H. Takahara, W. Matsuda, Y. Nishiwaki, Nondestructive discrimination of red silk single fibers using total reflection X-ray fluorescence spectrometry and synchrotron radiation X-ray fluorescence spectrometry. J. Forensic Sci. 66(5), 1658–1668 (2021). https://doi.org/10.1111/1556-4029.14764
doi: 10.1111/1556-4029.14764 pubmed: 34121191
Y. Nishiwaki, S. Watanabe, O. Shimoda, Y. Saito, T. Nakanishi, Y. Terada, T. Ninomiya, I. Nakai, Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation X-ray fluorescence spectrometry. J. Forensic Sci. 54(3), 564–570 (2009). https://doi.org/10.1111/j.1556-4029.2009.01005.x
doi: 10.1111/j.1556-4029.2009.01005.x pubmed: 19302400
Y. Nishiwaki, T. Takahashi, E. Wada, Y. Nishimura, Nondestructive mineral imaging of Chinese chive leaves withered by physiological damage using microbeam synchrotron radiation X-ray fluorescence analysis. Anal. Sci. 37, 1459–1463 (2021). https://doi.org/10.2116/analsci.21N002
doi: 10.2116/analsci.21N002 pubmed: 33716261
D.T. Clarkson, J.B. Hanson, The mineral nutrition of higher plants. Ann. Rev. Plant Physiol. 31, 239–298 (1980). https://doi.org/10.1146/annurev.pp.31.060180.001323
doi: 10.1146/annurev.pp.31.060180.001323
R.A. Leigh, R.G.W. Jones, A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 97, 1–13 (1984). https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
doi: 10.1111/j.1469-8137.1984.tb04103.x
P. Marschner, Marschner’s mineral nutrition of higher plants, 3rd edn. (Elsevier, Academic Press, San Diego, 2012), pp. 191−248 https://doi.org/10.1016/C2009-0-63043-9
doi: 10.1016/C2009-0-63043-9
A.D. Peuke, Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot. 61(3), 635–655 (2009). https://doi.org/10.1093/jxb/erp352
doi: 10.1093/jxb/erp352 pubmed: 20032109
L.E. Williams, J.K. Pittman, Dissecting pathways involved in manganese homeostasis and stress in higher plant cells. Cell. Biol. Met. Nutr. 17, 95–117 (2010). https://doi.org/10.1007/978-3-642-10613-2_5
doi: 10.1007/978-3-642-10613-2_5
M. Reuveni, V. Agapov, R. Reuneni, A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (Sphaerotheca fuliginia) in cucumber plants. Eur. J. Plant Pathol. 103, 581–588 (1997). https://doi.org/10.1023/A:1008671630687
doi: 10.1023/A:1008671630687
L. Banci, I. Bertini, K.S. McGreevya, A. Rosato, Molecular recognition in copper trafficking. Nat. Prod. Rep. 27, 659–710 (2010). https://doi.org/10.1039/b906678k
doi: 10.1039/b906678k

Auteurs

Tomoya Takahashi (T)

Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.

Yasuyo Nishimura (Y)

Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.
Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.

Eriko Wada (E)

Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.
Kochi Agricultural Research Center, 1100 Hataeda, Nankoku, 783-0023, Japan.

Daisei Ueno (D)

Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.
Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, 783-8502, Japan.

Yoshinori Nishiwaki (Y)

Faculty of Education, Kochi University, 2-5-1 Akebono-cho, Kochi, 780-8520, Japan. nishiwaki@kochi-u.ac.jp.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism

Classifications MeSH