Association of common genetic variants with body mass index in Russian population.
Journal
European journal of clinical nutrition
ISSN: 1476-5640
Titre abrégé: Eur J Clin Nutr
Pays: England
ID NLM: 8804070
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
20
01
2022
accepted:
12
01
2023
revised:
09
01
2023
medline:
11
5
2023
pubmed:
24
1
2023
entrez:
23
1
2023
Statut:
ppublish
Résumé
Overweight is the scourge of modern society and a major risk factor for many diseases. For this reason, understanding the genetic component predisposing to high body mass index (BMI) seems to be an important task along with preventive measures aimed at improving eating behavior and increasing physical activity. We analyzed genetic data of a European cohort (n = 21,080, 47.25% women, East Slavs ancestry >80%) for 5 frequently found genes in the context of association with obesity: IPX3 (rs3751723), MC4R (rs17782313), TMEM18 (rs6548238), PPARG (rs1801282) and FTO (rs9939609). Our study revealed significant associations of FTO (rs9939609) (β = 0.37 (kg/m The results confirm the contribution of FTO, M4CR, and TMEM18 genes to the mechanism of body weight regulation and control.
Sections du résumé
BACKGROUND
Overweight is the scourge of modern society and a major risk factor for many diseases. For this reason, understanding the genetic component predisposing to high body mass index (BMI) seems to be an important task along with preventive measures aimed at improving eating behavior and increasing physical activity.
METHODS
We analyzed genetic data of a European cohort (n = 21,080, 47.25% women, East Slavs ancestry >80%) for 5 frequently found genes in the context of association with obesity: IPX3 (rs3751723), MC4R (rs17782313), TMEM18 (rs6548238), PPARG (rs1801282) and FTO (rs9939609).
RESULTS
Our study revealed significant associations of FTO (rs9939609) (β = 0.37 (kg/m
CONCLUSIONS
The results confirm the contribution of FTO, M4CR, and TMEM18 genes to the mechanism of body weight regulation and control.
Identifiants
pubmed: 36690773
doi: 10.1038/s41430-023-01265-z
pii: 10.1038/s41430-023-01265-z
doi:
Substances chimiques
FTO protein, human
EC 1.14.11.33
Alpha-Ketoglutarate-Dependent Dioxygenase FTO
EC 1.14.11.33
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
574-578Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
World Health Organization (WHO). Obesity. 2021. https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity .
World Health Organization (WHO). Obesity and overweight. 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 18 Nov 2021).
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.
pubmed: 30253139
Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin North Am. 2018;102:13–33.
pubmed: 29156181
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.
pubmed: 30814686
Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016;4:174–86.
pubmed: 26654575
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N. Engl J Med. 2017;376:254–66.
pubmed: 28099824
Fewtrell MS, Haschke F, Prescott SL (eds): Preventive Aspects of Early Nutrition. Nestlé Nutr Inst Workshop Ser. Nestec Ltd. Vevey/S. Karger AG Basel, 2016, vol 85, pp 155–165. https://doi.org/10.1159/000439507 .
Bray MS, Loos RJ, McCaffery J. Erratum: NIH working group report-using genomic information to guide weight management: from universal to precision treatment. Obesity. 2016;24:757–757.
Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism. 2019;92:37–50.
pubmed: 30399374
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6:223–36.
pubmed: 28919064
Müller MJ, Geisler C, Blundell J, Dulloo A, Schutz Y, Krawczak M, et al. The case of GWAS of obesity: does body weight control play by the rules? Int J Obes. 2018;42:1395–405.
Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science. 2006;312:279–83.
pubmed: 16614226
Boes E, Kollerits B, Heid IM, Hunt SC, Pichler M, Paulweber B, et al. INSIG2 Polymorphism is neither associated with BMI nor with phenotypes of lipoprotein metabolism. Obesity. 2008;16:827–33.
pubmed: 18239574
Hubáček J, Suchánek P, Lánská V, Piťha J, Adámková V. INSIG2 G-102A promoter variant exhibits context-dependent effect on HDL-cholesterol levels but not on BMI in Caucasians. Folia Biol. 2011;57:170–2.
Bressler J, Fornage M, Hanis CL, Kao WHL, Lewis CE, McPherson R, et al. The INSIG2 rs7566605 genetic variant does not play a major role in obesity in a sample of 24,722 individuals from four cohorts. BMC Med Genet. 2009;10. https://doi.org/10.1186/1471-2350-10-56.
Campa D, Hüsing A, McKay JD, Sinilnikova O, Vogel U, Tjønneland A, et al. The INSIG2 rs7566605 polymorphism is not associated with body mass index and breast cancer risk. BMC Cancer. 2010;10. https://doi.org/10.1186/1471-2407-10-563 .
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.
pubmed: 17434869
pmcid: 2646098
Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2008;41:18–24.
pubmed: 19079260
the GIANT Consortium. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.
Speliotes E, Willer C, Berndt S, Monda K, Thorleifsson G, Jackson A, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.
pubmed: 20935630
pmcid: 3014648
Locke A, Kahali B, Berndt S, Justice A, Pers T, Day F, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
pubmed: 25673413
pmcid: 4382211
Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci. 2016;130:943–86.
Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014;382:740–57.
pubmed: 22963884
Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49:1458–67.
pubmed: 28892062
Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–49.
pubmed: 30124842
pmcid: 6488973
Schlauch KA, Read RW, Lombardi VC, Elhanan G, Metcalf WJ, Slonim AD, et al. A comprehensive genome-wide and phenome-wide examination of BMI and obesity in a Northern Nevadan cohort. G3 Genes|Genomes|Genet. 2020;10:645–64.
pubmed: 31888951
Chauhdary Z, Rehman K, Akash MSH. The composite alliance of FTO locus with obesity‐related genetic variants. Clin Exp Pharmacol Physiol. 2021;48:954–65.
pubmed: 33735452
Todendi PF, de Moura Valim AR, Klinger E, Reuter CP, Molina S, Martínez JA, et al. The role of the genetic variants IRX3 rs3751723 and FTO rs9939609 in the obesity phenotypes of children and adolescents. Obes Res Clin Pract. 2019;13:137–42.
Bañales-Luna M, Figueroa-Vega N, Marín-Aragón CI, Perez-Luque E, Ibarra-Reynoso L, Gallardo-Blanco HL, et al. Associations of nicotidamide-N-methyltransferase, FTO, and IRX3 genetic variants with body mass index and resting energy expenditure in Mexican subjects. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-67832-7 .
Yılmaz B, Gezmen, Karadağ M. The current review of adolescent obesity: the role of genetic factors. J Pediatr Endocrinol Metab. 2020;34:151–62.
pubmed: 33185580
Castro GV, Latorre AFS, Korndorfer FP, de Carlos Back LK, Lofgren SE. The impact of variants in four genes: MC4R, FTO, PPARG and PPARGC1A in overweight and obesity in a large sample of the Brazilian population. Biochem Genet. 2021;59:1666–79.
pubmed: 34057646
Yu K, Li L, Zhang L, Guo L, Wang C. Association between MC4R rs17782313 genotype and obesity: a meta-analysis. Gene. 2020;733:144372.
pubmed: 31954858
Todendi PF, Klinger EI, Geraldo ACR, Brixner L, Reuter CP, Lindenau JDR, et al. Genetic risk score based on fat mass and obesity-associated, transmembrane protein 18 and fibronectin type III domain containing 5 polymorphisms is associated with anthropometric characteristics in South Brazilian children and adolescents. Br J Nutr. 2018;121:93–9.
pubmed: 30311592
Velazquez-Roman J, Angulo-Zamudio UA, León-Sicairos N, Medina-Serrano J, DeLira-Bustillos N, Villamil-Ramírez H, et al. Association of FTO, ABCA1, ADRB3, and PPARG variants with obesity, type 2 diabetes, and metabolic syndrome in a Northwest Mexican adult population. J Diabetes Complicat. 2021;35:108025.
Gholamalizadeh M, Mirzaei Dahka S, Vahid F, Bourbour F, Badeli M, Javadi Kooshesh S et al. Does the rs9939609 FTO gene polymorphism affect fat percentage? A meta-analysis. Arch Physiol Biochem. 2020; 128:1421–1425. https://doi.org/10.1080/13813455.2020.1773861 .
Yasri S, Wiwanitkit V. Association of FTO rs9939609 with obesity. Med Princ Pract. 2018;27:496–6.
pubmed: 29847830
pmcid: 6244026
Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–72.
pubmed: 17991826
pmcid: 2668859
Gulati P, Yeo GSH. The biology of FTO: from nucleic acid demethylase to amino acid sensor. Diabetologia. 2013;56:2113–21.
pubmed: 23896822
pmcid: 3764322
Koj N, Grochowalski Ł, Jarczak J, Wójtowicz W, Sobalska-Kwapis M, Słomka M et al. The association between polymorphisms near TMEM18 and the risk of obesity: a meta-analysis. BMC Med Genom. 2021;14. https://doi.org/10.1186/s12920-021-01025-7 .
Delhanty PJD, Bouw E, Huisman M, Vervenne RML, Themmen APN, van der Lely AJ, et al. Functional characterization of a new human melanocortin-4 receptor homozygous mutation (N72K) that is associated with early-onset obesity. Mol Biol Rep. 2014;41:7967–72.
pubmed: 25163632
Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6.
pubmed: 17496892
Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115.
pubmed: 17658951
pmcid: 1934391
Egorenkova NP, Sorokina EY, Pogozheva AV, Peskova EV, Makurina ON, Levin LG, et al. The study of the peculiarities of metabolism in individuals with rs9939609 polymorphism of FTO gene. Vopr Pitan. 2015;84:97–104.
pubmed: 26852537
Willer CJ, Speliotes EK, Loos RJF. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2008;41:25–34.
pubmed: 19079261
pmcid: 2695662
Qi L, Kraft P, Hunter DJ, Hu FB. The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet. 2008;17:3502–8.
pubmed: 18697794
pmcid: 2572696
Magno FCCM, Guaraná HC, da Fonseca ACP, Pedrosa AP, Zembrzuski VM, Cabello PH, et al. Association of the MC4R rs17782313 polymorphism with plasma ghrelin, leptin, IL6 and TNFα concentrations, food intake and eating behaviors in morbidly obese women. Eat Weight Disord - Stud Anorex, Bulim Obes. 2020;26:1079–87.
El Hajj Chehadeh S, Osman W, Nazar S, Jerman L, Alghafri A, Sajwani A, et al. Implication of genetic variants in overweight and obesity susceptibility among the young Arab population of the United Arab Emirates. Gene. 2020;739:144509.
pubmed: 32109558
Kang J, Guan R-C, Zhao Y, Chen Y. Obesity-related loci in TMEM18, CDKAL1 and FAIM2 are associated with obesity and type 2 diabetes in Chinese Han patients. BMC Med. Genet. 2020;21. https://doi.org/10.1186/s12881-020-00999-y .
Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–75.
pubmed: 24646999
pmcid: 4113484
Liu C, Chu C, Zhang J, Wu D, Xu D, Li P, et al. IRX3is a genetic modifier for birth weight, adolescent obesity and transaminase metabolism. Pediatr Obes. 2017;13:141–8.
pubmed: 28316138
Srivastava A, Mittal B, Prakash J, Srivastava P, Srivastava N, Srivastava N. A multianalytical approach to evaluate the association of 55 SNPs in 28 genes with obesity risk in North Indian adults. Am J Hum Biol. 2016;29:e22923.
Bakhashab S, Filimban N, Altall RM, Nassir R, Qusti SY, Alqahtani MH, et al. The effect sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 variants on type 2 diabetes mellitus risk among the Western Saudi population: a cross-sectional prospective study. Genes. 2020;11:98.
pubmed: 31947684
pmcid: 7017045
Bordoni L, Marchegiani F, Piangerelli M, Napolioni V, Gabbianelli R. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life. 2017;69:98–105.
pubmed: 28090739