[Minced cartilage procedure for the treatment of acetabular cartilage lesions of the hip joint].
Das Minced-Cartilage-Verfahren zur Therapie azetabulärer Knorpelschäden am Hüftgelenk.
AutoCartTM
Autologous cartilage implantation
Femoroacetabular impingement syndrome
Hip joint preservation
Platelet-rich plasma
Journal
Operative Orthopadie und Traumatologie
ISSN: 1439-0981
Titre abrégé: Oper Orthop Traumatol
Pays: Germany
ID NLM: 9604937
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
31
05
2022
accepted:
21
08
2022
revised:
11
08
2022
medline:
7
4
2023
pubmed:
25
1
2023
entrez:
24
1
2023
Statut:
ppublish
Résumé
Treatment of acetabular cartilage defects using autologous cartilage fragments. Acetabular cartilage damage (1-6 cm Advanced osteoarthritis (≥ 2 according to Tönnis) and extensive acetabular cartilage damage > 6 cm Arthroscopic preparation of the acetabular cartilage damage and removal of unstable cartilage fragments using a 4.0 mm shaver, which minces the cartilage fragments. If necessary, additional cartilage harvesting over the CAM morphology requiring resection. Collection of the cartilage fragments using Graftnet Postoperatively, weight bearing is restricted to 20 kg and range of motion to 90° of flexion for 6 weeks. This is supplemented by passive movement using a continuous passive motion (CPM) device. Since 2021, 13 patients treated with the described method were followed up for at least 6 months. A significant increase in the International Hip Outcome Tool (iHot)-12 and a significant reduction of pain were observed. No severe complications occurred. OPERATIONSZIEL: Therapie fokaler azetabulärer Knorpeldefekte mittels autologer Knorpelfragmente. Fokale azetabuläre Knorpelschäden (1–6 cm Fortgeschrittene Arthrose (Arthrosegrad ≥ 2 nach Tönnis) und großflächige azetabuläre Knorpelschäden > 6 cm Arthroskopische Präparation des azetabulären Knorpelschadens und Entnahme instabiler Knorpelanteile mittels 4,0-mm-Shaver, welcher die Knorpelfragmente zerkleinert und „minced“. Gegebenenfalls additive Knorpelentnahme über der zu resezierenden CAM-Morphologie. Sammeln der Knorpelfragmente mittels GraftNet Es erfolgt eine Teilbelastung mit 20 kg für 6 Wochen postoperativ. In der gleichen Zeit wird die Flexion auf 90° beschränkt. Ergänzend erfolgt eine passive Bewegung mittels Continuous-Passive-Motion(CPM)-Schiene. Seit 2021 wurden 13 Patienten mit der beschriebenen Methode behandelt und mindestens 6 Monate nachuntersucht. Es wurden ein signifikanter Anstieg des international Hip-Outcome Tools (iHot-12) sowie eine signifikante Schmerzreduktion beobachtet. Es traten keine schweren Komplikationen auf.
Autres résumés
Type: Publisher
(ger)
OPERATIONSZIEL: Therapie fokaler azetabulärer Knorpeldefekte mittels autologer Knorpelfragmente.
Identifiants
pubmed: 36692521
doi: 10.1007/s00064-022-00796-1
pii: 10.1007/s00064-022-00796-1
doi:
Types de publication
English Abstract
Journal Article
Review
Langues
ger
Sous-ensembles de citation
IM
Pagination
100-109Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Références
Albrecht F, Roessner A, Zimmermann E (1983) Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg 101:213–217. https://doi.org/10.1007/BF00436773
doi: 10.1007/BF00436773
pubmed: 6603207
Bonasia DE, Marmotti A, Mattia S et al (2015) The degree of chondral fragmentation affects extracellular matrix production in cartilage autograft implantation. An in vitro study. Arthroscopy 31(12):2335–2341. https://doi.org/10.1016/j.arthro.2015.06.025
doi: 10.1016/j.arthro.2015.06.025
pubmed: 26321111
Clohisy JC, Baca G, Beaulé PE et al (2013) Descriptive epidemiology of femoroacetabular impingement. A North American cohort of patients undergoing surgery. Am J Sports Med 41(6):1348–1356. https://doi.org/10.1177/0363546513488861
doi: 10.1177/0363546513488861
pubmed: 23669751
Collins T, Alexander D, Barkatali B (2021) Platelet-rich plasma. A narrative review. EFORT Open Rev 6(4):225–235. https://doi.org/10.1302/2058-5241.6.200017
doi: 10.1302/2058-5241.6.200017
pubmed: 34040800
pmcid: 8142058
El Bitar YF, Lindner D, Jackson TJ, Domb BG (2014) Joint-preserving surgical options for management of chondral injuries of the hip. J Am Acad Orthop Surg 22:46–56. https://doi.org/10.5435/JAAOS-22-01-46
doi: 10.5435/JAAOS-22-01-46
pubmed: 24382879
Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement. A cause for osteoarthritis of the hip. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000096804.78689.c2
doi: 10.1097/01.blo.0000096804.78689.c2
pubmed: 14646767
Green CJ, Beck A, Wood D, Zheng MH (2016) The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preserv Surg 3(2):108–123. https://doi.org/10.1093/jhps/hnw007
doi: 10.1093/jhps/hnw007
pubmed: 27583147
pmcid: 5005050
Irwin RM, Bonassar LJ, Cohen I et al (2019) The clot thickens. Autologous and allogeneic fibrin sealants are mechanically equivalent in an ex vivo model of cartilage repair. PLoS ONE 14(11):e224756. https://doi.org/10.1371/journal.pone.0224756
doi: 10.1371/journal.pone.0224756
pubmed: 31703078
pmcid: 6839864
Krueger DR, Gesslein M, Schuetz M, Perka C, Schroeder JH (2018) Injectable autologous chondrocyte implantation (ACI) in acetabular cartilage defects-three-year results. J Hip Preserv Surg 5(4):386–392. https://doi.org/10.1093/jhps/hny043
doi: 10.1093/jhps/hny043
pubmed: 30647929
pmcid: 6328743
Lerch TD, Schmaranzer F, Hanke MS et al (2020) Femorale Torsionsfehler bei Patienten mit femoroazetabulärem Impingement. Die dynamische 3D Impingementsimulation kann bei der Planung der chirurgischen Hüftluxation und der Hüftarthroskopie behilflich sein (Torsional deformities of the femur in patients with femoroacetabular impingement : Dynamic 3D impingement simulation can be helpful for the planning of surgical hip dislocation and hip arthroscopy). Orthopäde 49(6):471–481. https://doi.org/10.1007/s00132-019-03847-x
doi: 10.1007/s00132-019-03847-x
pubmed: 31853580
Levinson C, Cavalli E, Sindi DM et al (2019) Chondrocytes from device-minced articular cartilage show potent outgrowth into fibrin and collagen hydrogels. Orthop J Sports Med 7(9):2325967119867618. https://doi.org/10.1177/2325967119867618
doi: 10.1177/2325967119867618
pubmed: 31534979
pmcid: 6737879
Lodhia P, Gui C, Chandrasekaran S, Suarez-Ahedo C, Vemula SP, Domb BG (2015) Microfracture in the hip. A matched-control study with average 3‑year follow-up. J Hip Preserv Surg 2(4):417–427. https://doi.org/10.1093/jhps/hnv073
doi: 10.1093/jhps/hnv073
pubmed: 27011867
pmcid: 4732373
Mascarenhas VV, Castro MO, Rego PA et al (2020) The Lisbon agreement on femoroacetabular impingement imaging-part 1. Overview. Eur Radiol 30(10):5281–5297. https://doi.org/10.1007/s00330-020-06822-9
doi: 10.1007/s00330-020-06822-9
pubmed: 32405754
Massen FK, Inauen CR, Harder LP, Runer A, Preiss S, Salzmann GM (2019) One-step Aautologous minced cartilage procedure for the treatment of knee joint chondral and osteochondral lesions. A series of 27 patients with 2‑year follow-up. Orthop J Sports Med 7(6):2325967119853773. https://doi.org/10.1177/2325967119853773
doi: 10.1177/2325967119853773
pubmed: 31223628
pmcid: 6566484
Matsumoto K, Ganz R, Khanduja V (2020) The history of femoroacetabular impingement. Bone Joint Res 9(9):572–577. https://doi.org/10.1302/2046-3758.99.BJR-2020-0003
doi: 10.1302/2046-3758.99.BJR-2020-0003
pubmed: 33005396
pmcid: 7502857
Pascual-Garrido C, Li DJ, Grammatopoulos G, Yanik EL, Clohisy JC (2019) The pattern of acetabular cartilage wear is hip morphology-dependent and patient demographic-dependent. Clin Orthop Relat Res 477(5):1021–1033. https://doi.org/10.1097/CORR.0000000000000649
doi: 10.1097/CORR.0000000000000649
pubmed: 30998630
pmcid: 6494325
Philippon MJ, Ryan M, Martin MB, Huard J (2022) Capsulolabral adhesions after hip arthroscopy for the treatment of femoroacetabular impingement. Strategies during rehabilitation and return to sport to reduce the risk of revision. Arthrosc Sports Med Rehabil 4(1):e255–e262. https://doi.org/10.1016/j.asmr.2021.10.031
doi: 10.1016/j.asmr.2021.10.031
pubmed: 35141559
pmcid: 8811550
Rogers MJ, Kondo M, Kim K, Okano T, Maak TG (2020) Femoral head chondrocyte viability at the cam deformity in patients with femoroacetabular impingement syndrome. Am J Sports Med 48(14):3586–3593. https://doi.org/10.1177/0363546520962788
doi: 10.1177/0363546520962788
pubmed: 33108221
Rühmann O, Puljić P, Schierbaum B, Wünsch M, Lerch S (2021) Technik der Hüftarthroskopie (Hip arthroscopy technique). Oper Orthop Traumatol 33(1):55–76. https://doi.org/10.1053/jars.2000.7686
doi: 10.1053/jars.2000.7686
pubmed: 33533950
Rühmann O, Wünsch M, Lipka W, Stark DA, Lerch S (2014) Arthroskopische Arthrolyse des Hüftgelenks (Arthroscopic arthrolysis of the hip). Oper Orthop Traumatol 26(4):341–352. https://doi.org/10.1007/s00064-013-0285-9
doi: 10.1007/s00064-013-0285-9
pubmed: 25091159
Salzmann GM, Ossendorff R, Gilat R, Cole BJ (2021) Autologous minced cartilage implantation for treatment of chondral and osteochondral lesions in the knee joint. An overview. Cartilage 13(1_suppl):1124S–1136S. https://doi.org/10.1177/1947603520942952
doi: 10.1177/1947603520942952
pubmed: 32715735
Shah SS, Mithoefer K (2021) Scientific developments and clinical applications utilizing chondrons and chondrocytes with matrix for cartilage repair. Cartilage 13(1_suppl):1195S–1205S. https://doi.org/10.1177/1947603520968884
doi: 10.1177/1947603520968884
pubmed: 33155482
Sogbein OA, Shah A, Kay J et al (2019) Predictors of outcomes after hip arthroscopic surgery for femoroacetabular impingement. A systematic review. Orthop J Sports Med 7(6):2325967119848982. https://doi.org/10.1177/2325967119848982
doi: 10.1177/2325967119848982
pubmed: 31259183
pmcid: 6585257
Tsuyuguchi Y, Nakasa T, Ishikawa M et al (2021) The benefit of minced cartilage over isolated chondrocytes in atelocollagen gel on chondrocyte proliferation and migration. Cartilage 12(1):93–101. https://doi.org/10.1177/1947603518805205
doi: 10.1177/1947603518805205
pubmed: 30311776
Wright VJ, McCrum CL, Li H, Tranovich MJ, Huard J (2018) Significant chondrocyte viability is present in acetabular chondral flaps associated with femoroacetabular impingement. Am J Sports Med 46(1):149–152. https://doi.org/10.1177/0363546517732751
doi: 10.1177/0363546517732751
pubmed: 29024597
Zimmerer A, Janz V, Sobau C, Wassilew GI, Miehlke W (2021) Defining the clinically meaningful outcomes for arthroscopic treatment of femoroacetabular impingement syndrome at minimum 10-year follow-up. The timing of surgery is crucial. Orthop J Sports Med 9(2):2325967120985140. https://doi.org/10.1177/2325967120985140
doi: 10.1177/2325967120985140
pubmed: 33718501
pmcid: 7922622
Zimmerer A, Ramoser A, Streit M et al (2021) Osteoarthrosis, advanced age, and female sex are risk factors for inferior outcomes after hip arthroscopy and labral debridement for femoroacetabular impingement syndrome. Case series with minimum 10-year follow-up. Arthroscopy 37(6):1822–1828.e1. https://doi.org/10.1016/j.arthro.2021.01.024
doi: 10.1016/j.arthro.2021.01.024
pubmed: 33515737