Photoelectrochemical immunosensor for HER2 detection based on BiVO
BiVO4-Bi2S3 heterojunction
CdS
Human epidermal growth factor receptor 2
Magnetic nanoparticles
Photoelectrochemical immunosensor
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
24 01 2023
24 01 2023
Historique:
received:
10
10
2022
accepted:
17
12
2022
entrez:
24
1
2023
pubmed:
25
1
2023
medline:
27
1
2023
Statut:
epublish
Résumé
A sandwiched photoelectrochemical (PEC) sensor was developed for sensitive detection of human epidermal growth factor receptor 2 (HER2) based on BiVO
Identifiants
pubmed: 36692640
doi: 10.1007/s00604-022-05628-4
pii: 10.1007/s00604-022-05628-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
67Subventions
Organisme : National Natural Science Foundation of China
ID : 22064010
Organisme : National Natural Science Foundation of China
ID : 22174163
Organisme : National Natural Science Foundation of China
ID : 51862014
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20202ACBL213009
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20212BAB203019
Organisme : Education Department of Hunan Province
ID : 19A346
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Hamilton E, Shastry M, Shiller SM et al (2021) Targeting HER2 heterogeneity in breast cancer Cancer. Treat Rev 100:102286. https://doi.org/10.1016/j.ctrv.2021.102286
doi: 10.1016/j.ctrv.2021.102286
Arya SK, Zhurauski P, Jolly P et al (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112. https://doi.org/10.1016/j.bios.2017.11.013
doi: 10.1016/j.bios.2017.11.013
Floros KV, Jacob S, Kurupi R et al (2021) Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death Dis 12:179. https://doi.org/10.1038/s41419-021-03457-6
doi: 10.1038/s41419-021-03457-6
Dong YR, Li W, Gu ZK et al (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2 glycan-imprinted nanoparticles. Angew Chem Int Ed 58:10621–10625. https://doi.org/10.1002/anie.201904860
doi: 10.1002/anie.201904860
Grimm EV, Allison KH, Hicks DG et al (2021) HER2 testing: insights from pathologists’ perspective on technically challenging HER2 FISH cases. Appl Immunohistochem Mol Morphol 29:635–642. https://doi.org/10.1097/PAI.0000000000000946
doi: 10.1097/PAI.0000000000000946
Capobianco JA, Shih WY, Adams GP et al (2011) Label-free Her2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens Actuators B Chem 160:349–356. https://doi.org/10.1016/j.snb.2011.07.060
doi: 10.1016/j.snb.2011.07.060
Loo L, Capobianco JA, Wu W et al (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397. https://doi.org/10.1021/ac103301r
doi: 10.1021/ac103301r
Luo J, Liang D, Li X et al (2021) Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co
doi: 10.1007/s00604-021-04829-7
Yang S, You M, Zhang F et al (2018) A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sens Actuators B Chem 258:796–802. https://doi.org/10.1016/j.snb.2017.11.119
doi: 10.1016/j.snb.2017.11.119
Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123. https://doi.org/10.1016/j.bios.2017.04.020
doi: 10.1016/j.bios.2017.04.020
Mehmet LY (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu
doi: 10.1007/s00604-021-04735-y
Shen CC, Zeng K, Luo JJ et al (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269. https://doi.org/10.1021/acs.analchem.7b01747
doi: 10.1021/acs.analchem.7b01747
Sharma S, Zapatero-Rodriguez J, Saxena R et al (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85. https://doi.org/10.1016/j.bios.2018.01.056
doi: 10.1016/j.bios.2018.01.056
Ravalli A, da Rocha CG, Yamanaka H et al (2015) A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry 106:268–275. https://doi.org/10.1016/j.bioelechem.2015.07.010
doi: 10.1016/j.bioelechem.2015.07.010
Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens Actuators B Chem 220:1145–1151. https://doi.org/10.1016/j.snb.2015.06.094
doi: 10.1016/j.snb.2015.06.094
Niazi JH, Verma SK, Niazi S et al (2015) In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 140:243–249. https://doi.org/10.1039/c4an01665c
doi: 10.1039/c4an01665c
Tian S, Zeng K, Yang A et al (2017) A copper based enzyme-free fluorescence ELISA for HER2 detection. J Immunol Methods 451:78–82. https://doi.org/10.1016/j.jim.2017.09.002
doi: 10.1016/j.jim.2017.09.002
Martin V, Sullivan B, Walker K et al (2006) Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl Spectrosc 60:994–1003. https://doi.org/10.1366/000370206778397498
doi: 10.1366/000370206778397498
Wang J, Long J, Liu Z et al (2017) Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 91:53–59. https://doi.org/10.1016/j.bios.2016.12.029
doi: 10.1016/j.bios.2016.12.029
Chang J, Lv W, Wu J et al (2021) Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. Chin Chem Letters 32:775–778. https://doi.org/10.1016/j.cclet.2020.05.041
doi: 10.1016/j.cclet.2020.05.041
Dai H, Zhang S, Hong Z et al (2016) A potentiometric addressable photoelectrochemical biosensor for sensitive detection of two biomarkers. Anal Chem 88:9532–9538. https://doi.org/10.1021/acs.analchem.6b02101
doi: 10.1021/acs.analchem.6b02101
Wang W, Wang X, Zhou C et al (2017) Bi
doi: 10.1021/acs.jpcc.7b06838
Chen HQ, Lin LY, Chen SL (2018) Direct growth of BiVO
doi: 10.1021/acsaem.8b01146
Hu J, Zhang F, Yang Y et al (2020) In situ preparation of Bi
doi: 10.1039/d0cy00006j
Li X, Cui K, Xiu M et al (2022) In-situ growth of WO
doi: 10.1039/D2TB00297C
Ye C, Xu S, Wu Z et al (2022) Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Bioanal Chem 414:4139–4147. https://doi.org/10.1007/s00216-022-04065-9
doi: 10.1007/s00216-022-04065-9
Kodan N, Ahmad M, Mehta BR (2021) Charge carrier separation and enhanced PEC properties of BiVO
doi: 10.1016/j.ijhydene.2020.09.096
Fang G, Liu Z, Han C (2020) Enhancing the PEC water splitting performance of BiVO
doi: 10.1016/j.apsusc.2020.146095
Bai S, Li Q, Han N et al (2020) Synthesis of novel BiVO
doi: 10.1016/j.jcis.2020.01.104
Wang M, Wang Q, Guo P et al (2019) In situ fabrication of nanoporous BiVO
doi: 10.1016/j.jcis.2018.09.056
Liu CJ, Li J, Li YM et al (2015) Epitaxial growth of Bi
doi: 10.1039/C5RA13171E
Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-Fetoprotein. Anal Chem 84:10492–10499. https://doi.org/10.1021/ac302853y
doi: 10.1021/ac302853y
Xu R, Jiang Y, Xia L et al (2015) A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 74:411–417. https://doi.org/10.1016/j.bios.2015.06.037
doi: 10.1016/j.bios.2015.06.037
Liu YX, Ma HG, Zhang Y et al (2016) Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites. Biosens Bioelectron 86:439–445. https://doi.org/10.1016/j.bios.2016.06.089
doi: 10.1016/j.bios.2016.06.089
Zhou H, Han T, Wei Q et al (2016) Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methyltransferase activity. Anal Chem 88:2976–2983. https://doi.org/10.1021/acs.analchem.6b00450
doi: 10.1021/acs.analchem.6b00450