Photoelectrochemical immunosensor for HER2 detection based on BiVO

BiVO4-Bi2S3 heterojunction CdS Human epidermal growth factor receptor 2 Magnetic nanoparticles Photoelectrochemical immunosensor

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
24 01 2023
Historique:
received: 10 10 2022
accepted: 17 12 2022
entrez: 24 1 2023
pubmed: 25 1 2023
medline: 27 1 2023
Statut: epublish

Résumé

A sandwiched photoelectrochemical (PEC) sensor was developed for sensitive detection of human epidermal growth factor receptor 2 (HER2) based on BiVO

Identifiants

pubmed: 36692640
doi: 10.1007/s00604-022-05628-4
pii: 10.1007/s00604-022-05628-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

67

Subventions

Organisme : National Natural Science Foundation of China
ID : 22064010
Organisme : National Natural Science Foundation of China
ID : 22174163
Organisme : National Natural Science Foundation of China
ID : 51862014
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20202ACBL213009
Organisme : Natural Science Foundation of Jiangxi Province
ID : 20212BAB203019
Organisme : Education Department of Hunan Province
ID : 19A346

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Hamilton E, Shastry M, Shiller SM et al (2021) Targeting HER2 heterogeneity in breast cancer Cancer. Treat Rev 100:102286. https://doi.org/10.1016/j.ctrv.2021.102286
doi: 10.1016/j.ctrv.2021.102286
Arya SK, Zhurauski P, Jolly P et al (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112. https://doi.org/10.1016/j.bios.2017.11.013
doi: 10.1016/j.bios.2017.11.013
Floros KV, Jacob S, Kurupi R et al (2021) Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death Dis 12:179. https://doi.org/10.1038/s41419-021-03457-6
doi: 10.1038/s41419-021-03457-6
Dong YR, Li W, Gu ZK et al (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2 glycan-imprinted nanoparticles. Angew Chem Int Ed 58:10621–10625. https://doi.org/10.1002/anie.201904860
doi: 10.1002/anie.201904860
Grimm EV, Allison KH, Hicks DG et al (2021) HER2 testing: insights from pathologists’ perspective on technically challenging HER2 FISH cases. Appl Immunohistochem Mol Morphol 29:635–642. https://doi.org/10.1097/PAI.0000000000000946
doi: 10.1097/PAI.0000000000000946
Capobianco JA, Shih WY, Adams GP et al (2011) Label-free Her2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens Actuators B Chem 160:349–356. https://doi.org/10.1016/j.snb.2011.07.060
doi: 10.1016/j.snb.2011.07.060
Loo L, Capobianco JA, Wu W et al (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397. https://doi.org/10.1021/ac103301r
doi: 10.1021/ac103301r
Luo J, Liang D, Li X et al (2021) Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co
doi: 10.1007/s00604-021-04829-7
Yang S, You M, Zhang F et al (2018) A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sens Actuators B Chem 258:796–802. https://doi.org/10.1016/j.snb.2017.11.119
doi: 10.1016/j.snb.2017.11.119
Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123. https://doi.org/10.1016/j.bios.2017.04.020
doi: 10.1016/j.bios.2017.04.020
Mehmet LY (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu
doi: 10.1007/s00604-021-04735-y
Shen CC, Zeng K, Luo JJ et al (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269. https://doi.org/10.1021/acs.analchem.7b01747
doi: 10.1021/acs.analchem.7b01747
Sharma S, Zapatero-Rodriguez J, Saxena R et al (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85. https://doi.org/10.1016/j.bios.2018.01.056
doi: 10.1016/j.bios.2018.01.056
Ravalli A, da Rocha CG, Yamanaka H et al (2015) A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry 106:268–275. https://doi.org/10.1016/j.bioelechem.2015.07.010
doi: 10.1016/j.bioelechem.2015.07.010
Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens Actuators B Chem 220:1145–1151. https://doi.org/10.1016/j.snb.2015.06.094
doi: 10.1016/j.snb.2015.06.094
Niazi JH, Verma SK, Niazi S et al (2015) In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 140:243–249. https://doi.org/10.1039/c4an01665c
doi: 10.1039/c4an01665c
Tian S, Zeng K, Yang A et al (2017) A copper based enzyme-free fluorescence ELISA for HER2 detection. J Immunol Methods 451:78–82. https://doi.org/10.1016/j.jim.2017.09.002
doi: 10.1016/j.jim.2017.09.002
Martin V, Sullivan B, Walker K et al (2006) Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl Spectrosc 60:994–1003. https://doi.org/10.1366/000370206778397498
doi: 10.1366/000370206778397498
Wang J, Long J, Liu Z et al (2017) Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 91:53–59. https://doi.org/10.1016/j.bios.2016.12.029
doi: 10.1016/j.bios.2016.12.029
Chang J, Lv W, Wu J et al (2021) Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. Chin Chem Letters 32:775–778. https://doi.org/10.1016/j.cclet.2020.05.041
doi: 10.1016/j.cclet.2020.05.041
Dai H, Zhang S, Hong Z et al (2016) A potentiometric addressable photoelectrochemical biosensor for sensitive detection of two biomarkers. Anal Chem 88:9532–9538. https://doi.org/10.1021/acs.analchem.6b02101
doi: 10.1021/acs.analchem.6b02101
Wang W, Wang X, Zhou C et al (2017) Bi
doi: 10.1021/acs.jpcc.7b06838
Chen HQ, Lin LY, Chen SL (2018) Direct growth of BiVO
doi: 10.1021/acsaem.8b01146
Hu J, Zhang F, Yang Y et al (2020) In situ preparation of Bi
doi: 10.1039/d0cy00006j
Li X, Cui K, Xiu M et al (2022) In-situ growth of WO
doi: 10.1039/D2TB00297C
Ye C, Xu S, Wu Z et al (2022) Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Bioanal Chem 414:4139–4147. https://doi.org/10.1007/s00216-022-04065-9
doi: 10.1007/s00216-022-04065-9
Kodan N, Ahmad M, Mehta BR (2021) Charge carrier separation and enhanced PEC properties of BiVO
doi: 10.1016/j.ijhydene.2020.09.096
Fang G, Liu Z, Han C (2020) Enhancing the PEC water splitting performance of BiVO
doi: 10.1016/j.apsusc.2020.146095
Bai S, Li Q, Han N et al (2020) Synthesis of novel BiVO
doi: 10.1016/j.jcis.2020.01.104
Wang M, Wang Q, Guo P et al (2019) In situ fabrication of nanoporous BiVO
doi: 10.1016/j.jcis.2018.09.056
Liu CJ, Li J, Li YM et al (2015) Epitaxial growth of Bi
doi: 10.1039/C5RA13171E
Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-Fetoprotein. Anal Chem 84:10492–10499. https://doi.org/10.1021/ac302853y
doi: 10.1021/ac302853y
Xu R, Jiang Y, Xia L et al (2015) A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 74:411–417. https://doi.org/10.1016/j.bios.2015.06.037
doi: 10.1016/j.bios.2015.06.037
Liu YX, Ma HG, Zhang Y et al (2016) Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites. Biosens Bioelectron 86:439–445. https://doi.org/10.1016/j.bios.2016.06.089
doi: 10.1016/j.bios.2016.06.089
Zhou H, Han T, Wei Q et al (2016) Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methyltransferase activity. Anal Chem 88:2976–2983. https://doi.org/10.1021/acs.analchem.6b00450
doi: 10.1021/acs.analchem.6b00450

Auteurs

Qin Zeng (Q)

Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China.
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.

Suiping Wang (S)

Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan University of Arts and Science, Hunan Changde, 415000, China.

Yong Qian (Y)

Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China. yqian@ecut.edu.cn.

Minghui Yang (M)

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China. yangminghui@csu.edu.cn.

Limin Lu (L)

Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China. lulimin816@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH