A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function.

Fibroblast cytoskeleton Fibroblast electron microscopy Fibroblast filopodia Fibroblast proteomics NEDHFBA PPP1R21 Proteasome

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
May 2023
Historique:
received: 03 08 2022
accepted: 04 01 2023
medline: 28 3 2023
pubmed: 25 1 2023
entrez: 24 1 2023
Statut: ppublish

Résumé

PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin-proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.

Identifiants

pubmed: 36692708
doi: 10.1007/s12035-023-03219-9
pii: 10.1007/s12035-023-03219-9
pmc: PMC10039818
doi:

Substances chimiques

Proteasome Endopeptidase Complex EC 3.4.25.1
Protein Phosphatase 1 EC 3.1.3.16
Actins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2602-2618

Subventions

Organisme : AFM-Téléthon
ID : 21644
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Organisme : NHLBI NIH HHS
ID : UM1 HG008900
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Organisme : NHLBI NIH HHS
ID : UM1 HG008900
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Peel N, Iyer J, Naik A et al (2017) Protein phosphatase 1 down regulates ZYG-1 levels to limit centriole duplication. PLoS Genet 13:e1006543. https://doi.org/10.1371/journal.pgen.1006543
doi: 10.1371/journal.pgen.1006543 pubmed: 28103229 pmcid: 5289615
Munro S, Cuthbertson DJR, Cunningham J et al (2002) Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver. Diabetes 51:591–598. https://doi.org/10.2337/diabetes.51.3.591
doi: 10.2337/diabetes.51.3.591 pubmed: 11872655
Strack S, Kini S, Ebner FF et al (1999) Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J Comp Neurol 413:373–384
doi: 10.1002/(SICI)1096-9861(19991025)413:3<373::AID-CNE2>3.0.CO;2-Z pubmed: 10502246
Rehman AU, Najafi M, Kambouris M et al (2019) Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Hum Mutat 40:267–280. https://doi.org/10.1002/humu.23694
doi: 10.1002/humu.23694 pubmed: 30520571
Anazi S, Maddirevula S, Salpietro V et al (2017) Expanding the genetic heterogeneity of intellectual disability. Hum Genet 136:1419–1429. https://doi.org/10.1007/s00439-017-1843-2
doi: 10.1007/s00439-017-1843-2 pubmed: 28940097
Kotecha UH, Mistri M, Rayabarapu P et al (2022) The diagnostic utility of exome-based carrier screening in families with a positive family history. Am J Med Genet A 188:1323–1333. https://doi.org/10.1002/ajmg.a.62633
doi: 10.1002/ajmg.a.62633 pubmed: 34997808
Loddo S, Alesi V, Radio FC et al (2020) PPP1R21-related syndromic intellectual disability: report of an adult patient and review. Am J Med Genet A 182:3014–3022. https://doi.org/10.1002/ajmg.a.61889
doi: 10.1002/ajmg.a.61889 pubmed: 32985083
Suleiman J, Al Hashem AM, Tabarki B et al (2018) PPP1R21 homozygous null variants associated with developmental delay, muscle weakness, distinctive facial features, and brain abnormalities. Clin Genet 94:351–355. https://doi.org/10.1111/cge.13387
doi: 10.1111/cge.13387 pubmed: 29808498
Roos A, Thompson R, Horvath R et al (2018) Intersection of proteomics and genomics to “solve the unsolved” in rare disorders such as neurodegenerative and neuromuscular diseases. Proteomics Clin Appl. https://doi.org/10.1002/prca.201700073
Burkhart JM, Schumbrutzki C, Wortelkamp S et al (2012) Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics 75:1454–1462. https://doi.org/10.1016/j.jprot.2011.11.016
doi: 10.1016/j.jprot.2011.11.016 pubmed: 22166745
Hentschel A, Ahrends R (2020) Developing a robust assay to monitor and quantify key players of metabolic pathways during adipogenesis by targeted proteomics. Proteomics 20:e1900141. https://doi.org/10.1002/pmic.201900141
doi: 10.1002/pmic.201900141 pubmed: 32196961
Liebermeister W, Noor E, Flamholz A et al (2014) Visual account of protein investment in cellular functions. Proc Natl Acad Sci U S A 111:8488–8493. https://doi.org/10.1073/pnas.1314810111
doi: 10.1073/pnas.1314810111 pubmed: 24889604 pmcid: 4060655
Snel B, Lehmann G, Bork P et al (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444. https://doi.org/10.1093/nar/28.18.3442
doi: 10.1093/nar/28.18.3442 pubmed: 10982861 pmcid: 110752
Guettsches A-K, Meyer N, Zahedi RP et al (2022) FYCO1 increase and effect of arimoclomol-treatment in human VCP-pathology. Biomedicines 10(10):2443.  https://doi.org/10.3390/biomedicines10102443
Arlt A, Kohlschmidt N, Hentschel A et al (2022) Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis 17:29. https://doi.org/10.1186/s13023-021-02068-w
doi: 10.1186/s13023-021-02068-w pubmed: 35101074 pmcid: 8802438
Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A et al (2010) 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 73:1019–1029. https://doi.org/10.1002/jemt.20829
doi: 10.1002/jemt.20829 pubmed: 20232465
Voigt M, Fusch C, Olbertz D et al (2006) Analyse des Neugeborenenkollektivs der Bundesrepublik Deutschland. Geburtsh Frauenheilk 66:956–970. https://doi.org/10.1055/s-2006-924458
doi: 10.1055/s-2006-924458
Kromeyer-Hauschild K, Wabitsch M, Kunze D et al (2001) Perzentile für den body-mass-index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818. https://doi.org/10.1007/s001120170107
doi: 10.1007/s001120170107
Braegger C, Jenni OG, Konrad D et al (2011) Neue Wachstumskurven für die Schweiz. EMH Swiss Medical Publishers
Hentschel A, Czech A, Münchberg U et al (2021) Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 16:73. https://doi.org/10.1186/s13023-020-01669-1
doi: 10.1186/s13023-020-01669-1 pubmed: 33563298 pmcid: 7874489
Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9:1097. https://doi.org/10.1038/s41467-018-03509-0
doi: 10.1038/s41467-018-03509-0 pubmed: 29545515 pmcid: 5854577
Buratta S, Tancini B, Sagini K et al (2020) Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci 21(7):2576. https://doi.org/10.3390/ijms21072576
Maltsev AV, Balaban PM (2021) PP1/PP2A phosphatase inhibition-induced metaplasticity in protein synthesis blocker-treated hippocampal slices: LTP and LTD, or there and back again. Biochem Biophys Res Commun 558:64–70. https://doi.org/10.1016/j.bbrc.2021.04.061
doi: 10.1016/j.bbrc.2021.04.061 pubmed: 33901925
Melo EP, Konno T, Farace I et al (2022) Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nat Commun 13:2501. https://doi.org/10.1038/s41467-022-30238-2
doi: 10.1038/s41467-022-30238-2 pubmed: 35523806 pmcid: 9076838
Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42:873–886. https://doi.org/10.1016/j.tibs.2017.09.002
doi: 10.1016/j.tibs.2017.09.002 pubmed: 28947091
Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758. https://doi.org/10.1016/s1074-5521(01)00056-4
doi: 10.1016/s1074-5521(01)00056-4 pubmed: 11514224
Albornoz N, Bustamante H, Soza A et al (2019) Cellular responses to proteasome inhibition: molecular mechanisms and beyond. Int J Mol Sci 20(14):3379.  https://doi.org/10.3390/ijms20143379
Martinez A, Ramirez J, Osinalde N et al (2018) Neuronal proteomic analysis of the ubiquitinated substrates of the disease-linked E3 ligases Parkin and Ube3a. Biomed Res Int 2018:3180413. https://doi.org/10.1155/2018/3180413
doi: 10.1155/2018/3180413 pubmed: 29693004 pmcid: 5859835
Ibañez-Vega J, Del Valle BF, Saez JJ et al (2019) Proteasome dependent actin remodeling facilitates antigen extraction at the immune synapse of B cells. Front Immunol 10:225. https://doi.org/10.3389/fimmu.2019.00225
doi: 10.3389/fimmu.2019.00225 pubmed: 30873155 pmcid: 6401660
Bax M, McKenna J, Do-Ha D et al (2019) The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cells 8(6):581. https://doi.org/10.3390/cells8060581
Duncan EJ, Larivière R, Bradshaw TY et al (2017) Altered organization of the intermediate filament cytoskeleton and relocalization of proteostasis modulators in cells lacking the ataxia protein sacsin. Hum Mol Genet 26:3130–3143. https://doi.org/10.1093/hmg/ddx197
doi: 10.1093/hmg/ddx197 pubmed: 28535259 pmcid: 5886247
Sagara M, Kawasaki Y, Iemura S et al (2009) Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration. Oncogene 28:1357–1365. https://doi.org/10.1038/onc.2008.478
doi: 10.1038/onc.2008.478 pubmed: 19151759

Auteurs

Andreas Hentschel (A)

Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.

Nancy Meyer (N)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Nicolai Kohlschmidt (N)

Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany.

Claudia Groß (C)

Institute of Clinical Genetics and Tumor Genetics, Bonn, Germany.

Albert Sickmann (A)

Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.

Ulrike Schara-Schmidt (U)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Fabian Förster (F)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Ana Töpf (A)

The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.

Jon Christiansen (J)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Rita Horvath (R)

Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

Matthias Vorgerd (M)

Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.

Rachel Thompson (R)

Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.

Kiran Polavarapu (K)

Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.

Hanns Lochmüller (H)

Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.

Corinna Preusse (C)

Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Luis Hannappel (L)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Anne Schänzer (A)

Institute of Neuropathology, Justus Liebig University, Gießen, Germany.

Anika Grüneboom (A)

Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.

Andrea Gangfuß (A)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.

Andreas Roos (A)

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany. andreas.roos@uk-essen.de.
Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany. andreas.roos@uk-essen.de.
Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada. andreas.roos@uk-essen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH