A Homozygous PPP1R21 Splice Variant Associated with Severe Developmental Delay, Absence of Speech, and Muscle Weakness Leads to Activated Proteasome Function.
Fibroblast cytoskeleton
Fibroblast electron microscopy
Fibroblast filopodia
Fibroblast proteomics
NEDHFBA
PPP1R21
Proteasome
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
03
08
2022
accepted:
04
01
2023
medline:
28
3
2023
pubmed:
25
1
2023
entrez:
24
1
2023
Statut:
ppublish
Résumé
PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism. To decipher further the pathophysiological processes leading to the clinical manifestation of NEDHFBA, we investigated the proteomic signature of fibroblasts derived from the first NEDHFBA patient harboring a splice-site mutation in PPP1R21 and presenting with a milder phenotype. Proteomic findings and further functional studies demonstrate a profound activation of the ubiquitin-proteasome system with presence of protein aggregates and impact on cellular fitness and moreover suggest a cross-link between activation of the proteolytic system and cytoskeletal architecture (including filopodia) as exemplified on paradigmatic proteins including actin, thus extending the pathophysiological spectrum of the disease. In addition, the proteomic signature of PPP1R21-mutant fibroblasts displayed a dysregulation of a variety of proteins of neurological relevance. This includes increase proteins which might act toward antagonization of cellular stress burden in terms of pro-survival, a molecular finding which might accord with the presentation of a milder phenotype of our NEDHFBA patient.
Identifiants
pubmed: 36692708
doi: 10.1007/s12035-023-03219-9
pii: 10.1007/s12035-023-03219-9
pmc: PMC10039818
doi:
Substances chimiques
Proteasome Endopeptidase Complex
EC 3.4.25.1
Protein Phosphatase 1
EC 3.1.3.16
Actins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2602-2618Subventions
Organisme : AFM-Téléthon
ID : 21644
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Organisme : NHLBI NIH HHS
ID : UM1 HG008900
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Organisme : NHLBI NIH HHS
ID : UM1 HG008900
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Peel N, Iyer J, Naik A et al (2017) Protein phosphatase 1 down regulates ZYG-1 levels to limit centriole duplication. PLoS Genet 13:e1006543. https://doi.org/10.1371/journal.pgen.1006543
doi: 10.1371/journal.pgen.1006543
pubmed: 28103229
pmcid: 5289615
Munro S, Cuthbertson DJR, Cunningham J et al (2002) Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver. Diabetes 51:591–598. https://doi.org/10.2337/diabetes.51.3.591
doi: 10.2337/diabetes.51.3.591
pubmed: 11872655
Strack S, Kini S, Ebner FF et al (1999) Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J Comp Neurol 413:373–384
doi: 10.1002/(SICI)1096-9861(19991025)413:3<373::AID-CNE2>3.0.CO;2-Z
pubmed: 10502246
Rehman AU, Najafi M, Kambouris M et al (2019) Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Hum Mutat 40:267–280. https://doi.org/10.1002/humu.23694
doi: 10.1002/humu.23694
pubmed: 30520571
Anazi S, Maddirevula S, Salpietro V et al (2017) Expanding the genetic heterogeneity of intellectual disability. Hum Genet 136:1419–1429. https://doi.org/10.1007/s00439-017-1843-2
doi: 10.1007/s00439-017-1843-2
pubmed: 28940097
Kotecha UH, Mistri M, Rayabarapu P et al (2022) The diagnostic utility of exome-based carrier screening in families with a positive family history. Am J Med Genet A 188:1323–1333. https://doi.org/10.1002/ajmg.a.62633
doi: 10.1002/ajmg.a.62633
pubmed: 34997808
Loddo S, Alesi V, Radio FC et al (2020) PPP1R21-related syndromic intellectual disability: report of an adult patient and review. Am J Med Genet A 182:3014–3022. https://doi.org/10.1002/ajmg.a.61889
doi: 10.1002/ajmg.a.61889
pubmed: 32985083
Suleiman J, Al Hashem AM, Tabarki B et al (2018) PPP1R21 homozygous null variants associated with developmental delay, muscle weakness, distinctive facial features, and brain abnormalities. Clin Genet 94:351–355. https://doi.org/10.1111/cge.13387
doi: 10.1111/cge.13387
pubmed: 29808498
Roos A, Thompson R, Horvath R et al (2018) Intersection of proteomics and genomics to “solve the unsolved” in rare disorders such as neurodegenerative and neuromuscular diseases. Proteomics Clin Appl. https://doi.org/10.1002/prca.201700073
Burkhart JM, Schumbrutzki C, Wortelkamp S et al (2012) Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics 75:1454–1462. https://doi.org/10.1016/j.jprot.2011.11.016
doi: 10.1016/j.jprot.2011.11.016
pubmed: 22166745
Hentschel A, Ahrends R (2020) Developing a robust assay to monitor and quantify key players of metabolic pathways during adipogenesis by targeted proteomics. Proteomics 20:e1900141. https://doi.org/10.1002/pmic.201900141
doi: 10.1002/pmic.201900141
pubmed: 32196961
Liebermeister W, Noor E, Flamholz A et al (2014) Visual account of protein investment in cellular functions. Proc Natl Acad Sci U S A 111:8488–8493. https://doi.org/10.1073/pnas.1314810111
doi: 10.1073/pnas.1314810111
pubmed: 24889604
pmcid: 4060655
Snel B, Lehmann G, Bork P et al (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444. https://doi.org/10.1093/nar/28.18.3442
doi: 10.1093/nar/28.18.3442
pubmed: 10982861
pmcid: 110752
Guettsches A-K, Meyer N, Zahedi RP et al (2022) FYCO1 increase and effect of arimoclomol-treatment in human VCP-pathology. Biomedicines 10(10):2443. https://doi.org/10.3390/biomedicines10102443
Arlt A, Kohlschmidt N, Hentschel A et al (2022) Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis 17:29. https://doi.org/10.1186/s13023-021-02068-w
doi: 10.1186/s13023-021-02068-w
pubmed: 35101074
pmcid: 8802438
Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A et al (2010) 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 73:1019–1029. https://doi.org/10.1002/jemt.20829
doi: 10.1002/jemt.20829
pubmed: 20232465
Voigt M, Fusch C, Olbertz D et al (2006) Analyse des Neugeborenenkollektivs der Bundesrepublik Deutschland. Geburtsh Frauenheilk 66:956–970. https://doi.org/10.1055/s-2006-924458
doi: 10.1055/s-2006-924458
Kromeyer-Hauschild K, Wabitsch M, Kunze D et al (2001) Perzentile für den body-mass-index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818. https://doi.org/10.1007/s001120170107
doi: 10.1007/s001120170107
Braegger C, Jenni OG, Konrad D et al (2011) Neue Wachstumskurven für die Schweiz. EMH Swiss Medical Publishers
Hentschel A, Czech A, Münchberg U et al (2021) Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 16:73. https://doi.org/10.1186/s13023-020-01669-1
doi: 10.1186/s13023-020-01669-1
pubmed: 33563298
pmcid: 7874489
Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9:1097. https://doi.org/10.1038/s41467-018-03509-0
doi: 10.1038/s41467-018-03509-0
pubmed: 29545515
pmcid: 5854577
Buratta S, Tancini B, Sagini K et al (2020) Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci 21(7):2576. https://doi.org/10.3390/ijms21072576
Maltsev AV, Balaban PM (2021) PP1/PP2A phosphatase inhibition-induced metaplasticity in protein synthesis blocker-treated hippocampal slices: LTP and LTD, or there and back again. Biochem Biophys Res Commun 558:64–70. https://doi.org/10.1016/j.bbrc.2021.04.061
doi: 10.1016/j.bbrc.2021.04.061
pubmed: 33901925
Melo EP, Konno T, Farace I et al (2022) Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nat Commun 13:2501. https://doi.org/10.1038/s41467-022-30238-2
doi: 10.1038/s41467-022-30238-2
pubmed: 35523806
pmcid: 9076838
Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42:873–886. https://doi.org/10.1016/j.tibs.2017.09.002
doi: 10.1016/j.tibs.2017.09.002
pubmed: 28947091
Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758. https://doi.org/10.1016/s1074-5521(01)00056-4
doi: 10.1016/s1074-5521(01)00056-4
pubmed: 11514224
Albornoz N, Bustamante H, Soza A et al (2019) Cellular responses to proteasome inhibition: molecular mechanisms and beyond. Int J Mol Sci 20(14):3379. https://doi.org/10.3390/ijms20143379
Martinez A, Ramirez J, Osinalde N et al (2018) Neuronal proteomic analysis of the ubiquitinated substrates of the disease-linked E3 ligases Parkin and Ube3a. Biomed Res Int 2018:3180413. https://doi.org/10.1155/2018/3180413
doi: 10.1155/2018/3180413
pubmed: 29693004
pmcid: 5859835
Ibañez-Vega J, Del Valle BF, Saez JJ et al (2019) Proteasome dependent actin remodeling facilitates antigen extraction at the immune synapse of B cells. Front Immunol 10:225. https://doi.org/10.3389/fimmu.2019.00225
doi: 10.3389/fimmu.2019.00225
pubmed: 30873155
pmcid: 6401660
Bax M, McKenna J, Do-Ha D et al (2019) The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cells 8(6):581. https://doi.org/10.3390/cells8060581
Duncan EJ, Larivière R, Bradshaw TY et al (2017) Altered organization of the intermediate filament cytoskeleton and relocalization of proteostasis modulators in cells lacking the ataxia protein sacsin. Hum Mol Genet 26:3130–3143. https://doi.org/10.1093/hmg/ddx197
doi: 10.1093/hmg/ddx197
pubmed: 28535259
pmcid: 5886247
Sagara M, Kawasaki Y, Iemura S et al (2009) Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration. Oncogene 28:1357–1365. https://doi.org/10.1038/onc.2008.478
doi: 10.1038/onc.2008.478
pubmed: 19151759