Propensity score matching after multiple imputation when a confounder has missing data.

confounding missing data multiple imputation propensity score matching

Journal

Statistics in medicine
ISSN: 1097-0258
Titre abrégé: Stat Med
Pays: England
ID NLM: 8215016

Informations de publication

Date de publication:
30 03 2023
Historique:
revised: 08 12 2022
received: 23 07 2021
accepted: 04 01 2023
pubmed: 26 1 2023
medline: 15 3 2023
entrez: 25 1 2023
Statut: ppublish

Résumé

One of the main challenges when using observational data for causal inference is the presence of confounding. A classic approach to account for confounding is the use of propensity score techniques that provide consistent estimators of the causal treatment effect under four common identifiability assumptions for causal effects, including that of no unmeasured confounding. Propensity score matching is a very popular approach which, in its simplest form, involves matching each treated patient to an untreated patient with a similar estimated propensity score, that is, probability of receiving the treatment. The treatment effect can then be estimated by comparing treated and untreated patients within the matched dataset. When missing data arises, a popular approach is to apply multiple imputation to handle the missingness. The combination of propensity score matching and multiple imputation is increasingly applied in practice. However, in this article we demonstrate that combining multiple imputation and propensity score matching can lead to over-coverage of the confidence interval for the treatment effect estimate. We explore the cause of this over-coverage and we evaluate, in this context, the performance of a correction to Rubin's rules for multiple imputation proposed by finding that this correction removes the over-coverage.

Identifiants

pubmed: 36695043
doi: 10.1002/sim.9658
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1082-1095

Subventions

Organisme : Medical Research Council
ID : MR/S01442X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T032448/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MCUU1202329
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12023/29
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00004/07
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12023/21
Pays : United Kingdom
Organisme : Medical Research Council
ID : MRS01442X1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MCUU1202321
Pays : United Kingdom

Informations de copyright

© 2023 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Références

Pharm Stat. 2011 Mar-Apr;10(2):150-61
pubmed: 20925139
Stat Methods Med Res. 2016 Feb;25(1):188-204
pubmed: 22687877
Stat Med. 2011 Feb 20;30(4):377-99
pubmed: 21225900
BMC Med Res Methodol. 2009 Jul 28;9:57
pubmed: 19638200
Stat Methods Med Res. 2016 Dec;25(6):3066-3068
pubmed: 27852808
Stat Med. 2006 Jul 15;25(13):2230-56
pubmed: 16220488
Eur J Epidemiol. 2019 Jan;34(1):23-36
pubmed: 30341708
PLoS One. 2020 Dec 31;15(12):e0244423
pubmed: 33382777
Am J Epidemiol. 2008 Sep 15;168(6):656-64
pubmed: 18682488
Stat Methods Med Res. 2019 Jan;28(1):3-19
pubmed: 28573919
Epidemiology. 2009 Jan;20(1):3-5
pubmed: 19234395
J Clin Epidemiol. 2010 Aug;63(8):826-33
pubmed: 20630332
Biometrics. 2000 Mar;56(1):118-24
pubmed: 10783785
Perspect Biol Med. 2005 Autumn;48(4):516-34
pubmed: 16227664
Stat Med. 2014 Mar 15;33(6):1057-69
pubmed: 24123228
J Clin Epidemiol. 2016 Dec;80:107-115
pubmed: 27445178
Thorax. 2019 Jan;74(1):51-59
pubmed: 30100577
Lancet. 2002 Jan 19;359(9302):248-52
pubmed: 11812579
Int J Methods Psychiatr Res. 2011 Mar;20(1):40-9
pubmed: 21499542
Stat Med. 2008 May 30;27(12):2037-49
pubmed: 18038446
Stat Med. 2023 Mar 30;42(7):1082-1095
pubmed: 36695043
J Natl Cancer Inst. 2017 Aug 1;109(8):
pubmed: 28376195
N Engl J Med. 2000 Jun 22;342(25):1887-92
pubmed: 10861325
Stat Med. 2008 May 30;27(12):2055-61; discussion 2066-9
pubmed: 18446836
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S84-S90.e1
pubmed: 23849158
Stat Med. 2019 Nov 20;38(26):5120-5132
pubmed: 31512265
Stat Med. 2019 May 20;38(11):2074-2102
pubmed: 30652356
Intensive Care Med. 2010 Dec;36(12):1993-2003
pubmed: 20689924
Pharm Stat. 2021 Jan;20(1):15-24
pubmed: 32776719

Auteurs

Corentin Ségalas (C)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
Université Paris-Cité, Centre of Epidemiology and Statistics (CRESS) Inserm, Paris, France.

Clémence Leyrat (C)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

James R Carpenter (JR)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
MRC Clinical Trials Unit at UCL, UCL, London, UK.

Elizabeth Williamson (E)

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH