Study of Strawberry Notch homolog 1 and 2 expression in human glioblastoma.
Glioblastoma
Patient-derived cells
Strawberry-Notch homologs 1 and 2
Journal
Journal of neuro-oncology
ISSN: 1573-7373
Titre abrégé: J Neurooncol
Pays: United States
ID NLM: 8309335
Informations de publication
Date de publication:
Feb 2023
Feb 2023
Historique:
received:
07
12
2022
accepted:
05
01
2023
pubmed:
26
1
2023
medline:
10
3
2023
entrez:
25
1
2023
Statut:
ppublish
Résumé
In this work, we aimed to comprehensively document the expression of Strawberry Notch homolog (SBNO) 1 and 2 in glioblastoma (GBM) tissue and patient-derived GBM stem-like cell (GSC) cultures. We investigated SBNO1 and SBNO2 expression at the RNA and protein levels in glioma patient tissue and GSCs, respectively by performing immunostainings and qPCR analyses. We also used publicly-available datasets for assessing SBNO1 and SBNO2 gene expression and related copy number alterations. We used lentiviral transduction of SBNO2 to analyze the effect of its expression in patient-derived GSCs. We observed that SBNO2 expression is increased in GBM tissue samples compared to non tumoral brain, or lower-grade gliomas, whereas SBNO1 expression remains unchanged. We hypothesized that such SBNO2 high expression might be linked to copy-number alterations at the level of the 19p13 chromosome section. We located SBNO1 and SBNO2 in different subcellular compartments. Finally, we observed that SBNO2 overexpression induces different phenotypes in different patient-derived GSCs. These results provide the first characterization of SBNO1 and SBNO2 expression in glioma tissue, and indicate SBNO2 as highly expressed in GBM.
Identifiants
pubmed: 36695974
doi: 10.1007/s11060-023-04240-7
pii: 10.1007/s11060-023-04240-7
doi:
Substances chimiques
RNA
63231-63-0
SBNO2 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
515-523Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. https://doi.org/10.1093/neuonc/noz150
doi: 10.1093/neuonc/noz150
pubmed: 31675094
pmcid: 7032629
Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. https://doi.org/10.1056/nejmoa043330
doi: 10.1056/nejmoa043330
pubmed: 15758010
McLendon R, Friedman A, Bigner D et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. https://doi.org/10.1038/nature07385
doi: 10.1038/nature07385
Brennan CW, Verhaak RGW, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 153:139–152. https://doi.org/10.1016/j.cell.2013.09.034
doi: 10.1016/j.cell.2013.09.034
Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. https://doi.org/10.1016/j.cell.2015.12.028
doi: 10.1016/j.cell.2015.12.028
pubmed: 26824661
pmcid: 4754110
Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/NEUONC/NOAB106
doi: 10.1093/NEUONC/NOAB106
pubmed: 34185076
pmcid: 8328013
Shen C, Yu J, Zhang X et al (2019) Strawberry Notch 1 (SBNO1) promotes proliferation of spermatogonial stem cells via the noncanonical Wnt pathway in mice. Asian J Androl 21(4):345. https://doi.org/10.4103/AJA.AJA_65_18
doi: 10.4103/AJA.AJA_65_18
pubmed: 30198493
Tsuda L, Nagaraj R, Zipursky SL, Banerjee U (2002) An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell 110(5):625–637. https://doi.org/10.1016/S0092-8674(02)00875-9
doi: 10.1016/S0092-8674(02)00875-9
pubmed: 12230979
Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y (2010) Expression of strawberry notch family genes during zebrafish embryogenesis. Dev Dyn 239(6):1789–1796. https://doi.org/10.1002/DVDY.22287
doi: 10.1002/DVDY.22287
pubmed: 20503374
Takano AI, Zochi R, Hibi M, Terashima T, Katsuyama YU (2010) Function of strawberry notch family genes in the Zebrafish brain development. Kobe J Med Sci 56(5):220–230
Watanabe Y, Miyasaka KY, Kubo A et al (2017) Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep 7(1):1–17. https://doi.org/10.1038/srep46135
doi: 10.1038/srep46135
Grill M, Syme TE, Noçon AL et al (2015) Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia 63(10):1738–1752. https://doi.org/10.1002/GLIA.22841
doi: 10.1002/GLIA.22841
pubmed: 25903009
pmcid: 4676294
Syme TE, Grill M, Hayashida E, Viengkhou B, Campbell IL, Hofer MJ (2022) Strawberry notch homolog 2 regulates the response to interleukin-6 in the central nervous system. J Neuroinflammation 19(1):1–17. https://doi.org/10.1186/S12974-022-02475-1
doi: 10.1186/S12974-022-02475-1
El Kasmi KC, Smith AM, Williams L et al (2007) Cutting edge: a transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol 179(11):7215–7219. https://doi.org/10.4049/JIMMUNOL.179.11.7215
doi: 10.4049/JIMMUNOL.179.11.7215
pubmed: 18025162
Maruyama K, Uematsu S, Kondo T et al (2013) Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med 210(10):1947–1960. https://doi.org/10.1084/JEM.20130512
doi: 10.1084/JEM.20130512
pubmed: 23980096
pmcid: 3782043
Wu R, Sun JY, Zhao LL, Fan ZN, Yang C (2020) Systematic identification of key functional modules and genes in gastric cancer. Biomed Res Int. https://doi.org/10.1155/2020/8853348
doi: 10.1155/2020/8853348
pubmed: 33490257
pmcid: 7785366
Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M (2017) GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. https://doi.org/10.1093/neuonc/now247
doi: 10.1093/neuonc/now247
pubmed: 28031383
pmcid: 5692992
Madhavan S, Zenklusen J-C, Kotliarov Y, Sahni H, Fine HA, Buetow K (2009) Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 7(2):157–167. https://doi.org/10.1158/1541-7786.MCR-08-0435
doi: 10.1158/1541-7786.MCR-08-0435
pubmed: 19208739
pmcid: 2645472
Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. https://doi.org/10.1056/nejmoa1407279
doi: 10.1056/nejmoa1407279
pubmed: 26061753
pmcid: 4489704
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/NAR/GKX247
doi: 10.1093/NAR/GKX247
pubmed: 28407145
pmcid: 5570223
De Witt Hamer PC, Van Tilborg AAG, Eijk PP et al (2008) The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. https://doi.org/10.1038/sj.onc.1210850
doi: 10.1038/sj.onc.1210850
pubmed: 17934519
Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.03.030
doi: 10.1016/j.ccr.2006.03.030
pubmed: 17097564
pmcid: 2673136
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N (2021) The subventricular zone, a hideout for adult and pediatric high-grade glioma stem cells. Front Oncol. https://doi.org/10.3389/fonc.2020.614930
doi: 10.3389/fonc.2020.614930
pubmed: 33575218
pmcid: 7870981
Roversi G, Pfundt R, Moroni RF et al (2005) Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene 25(10):1571–1583. https://doi.org/10.1038/sj.onc.1209177
doi: 10.1038/sj.onc.1209177
Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci 110(10):4009–4014. https://doi.org/10.1073/PNAS.1219747110
doi: 10.1073/PNAS.1219747110
pubmed: 23412337
pmcid: 3593922
Brandstoetter T, Maurer B, Schmoellerl J et al (2022) S227: SBNO2 is a specific dependency of STAT3-deriven T-cell malignancies. HemaSphere 6:128–129. https://doi.org/10.1097/01.HS9.0000843800.65427.8E
doi: 10.1097/01.HS9.0000843800.65427.8E
West AJ, Tsui V, Stylli SS et al (2018) The role of interleukin-6-STAT3 signalling in glioblastoma (review). Oncol Lett 16(4):4095–4104. https://doi.org/10.3892/OL.2018.9227
doi: 10.3892/OL.2018.9227
pubmed: 30250528
pmcid: 6144698
Lee JH, Lee JE, Kahng JY et al (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243–247. https://doi.org/10.1038/s41586-018-0389-3
doi: 10.1038/s41586-018-0389-3
pubmed: 30069053