Decellularized cryopreserved human pericardium: a validation study towards tissue bank practice.
Allograft
Cardiac septal defects
Decellularization
Pericardium
Tissue bank
Journal
Cell and tissue banking
ISSN: 1573-6814
Titre abrégé: Cell Tissue Bank
Pays: Netherlands
ID NLM: 100965121
Informations de publication
Date de publication:
25 Jan 2023
25 Jan 2023
Historique:
received:
09
12
2022
accepted:
18
01
2023
entrez:
25
1
2023
pubmed:
26
1
2023
medline:
26
1
2023
Statut:
aheadofprint
Résumé
Pericardial patches are currently used as reconstructive material in cardiac surgery for surgical treatment of cardiac septal defects. Autologous pericardial patches, either treated with glutaraldehyde or not, can be used as an alternative to synthetic materials or xenograft in congenital septal defects repair. The availability of an allogenic decellularized pericardium could reduce complication during and after surgery and could be a valid alternative. Decellularization of allogenic tissues aims at reducing the immunogenic reaction that might trigger inflammation and tissue calcification over time. The ideal graft for congenital heart disease repair should be biocompatible, mechanically resistant, non-immunogenic, and should have the ability to growth with the patients. The aim of the present study is the evaluation of the efficacy of a new decellularization protocol of homologous pericardium, even after cryopreservation. The technique has proven to be suitable as a tissue bank procedure and highly successful in the removal of cells and nucleic acids content, but also in the preservation of collagen and biomechanical properties of the human pericardium.
Identifiants
pubmed: 36696047
doi: 10.1007/s10561-023-10072-6
pii: 10.1007/s10561-023-10072-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
Carr-White GS, Kilner PJ, Hon JK, Rutledge T, Edwards S, Burman ED, Pennell DJ, Yacoub MH (2001) Incidence, location, pathology, and significance of pulmonary homograft stenosis after the Ross operation. Circulation. 104(12 Suppl 1):I-16–I−20. https://doi.org/10.1161/hc37t1.094545
doi: 10.1161/hc37t1.094545
Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243
doi: 10.1016/j.biomaterials.2011.01.057
Desai MH, Hachana S, Bukhari SM, Stough A, Zurakowski D, Jonas RA, Ramakrishnan K (2022) A comparison of autologous pericardium with Dacron™ for closure of ventricular septal defect in infants. Eur J Cardiothorac Surg. 62(4):022. https://doi.org/10.1093/ejcts/ezac022
doi: 10.1093/ejcts/ezac022
Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
doi: 10.1016/j.biomaterials.2006.02.014
Gluck TM, Lamberti JJ, El-Said H, Devaney EJ, Murthy RA (2022) Long-term results using glutaraldehyde-treated homograft pericardium in congenital heart surgery. Ann Thorac Surg 113(1):182–190. https://doi.org/10.1016/j.athoracsur.2020.11.014
doi: 10.1016/j.athoracsur.2020.11.014
Grabenwoger M, Sider J, Fitzal F, Zelenka C, Windberger U, Grimm M, Moritz A, Böck A, Wolner E (1996) Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 62(3):772–777
doi: 10.1016/S0003-4975(96)00442-0
Hogan PG, O’Brien MF (2003) Improving the allograft valve: does the immune response matter? J Thorac Cardiovasc Surg 126(5):1251–1253. https://doi.org/10.1016/s0022-5223(03)01030-4
doi: 10.1016/s0022-5223(03)01030-4
IJsselhof RJ, Duchateau SDR, Schouten RM, Slieker MG, Hazekamp MG, Schoof PH (2020) Long-term follow-up of pericardium for the ventricular component in atrioventricular septal defect repair. World J Pediatr Congenit Heart Surg. 11(6):742–747. https://doi.org/10.1177/2150135120941461
doi: 10.1177/2150135120941461
Iop L, Paolin A, Aguiari P, Trojan D, Cogliati E, Gerosa G (2017) Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: in vitro assessment before clinical translation. J Cardiovasc Transl Res. 10(2):93–103
doi: 10.1007/s12265-017-9738-0
Jorge-Herrero E, Fonseca C, Barge AP, Turnay J, Olmo N, Fernández P, Lizarbe MA, GarcíaPáez JM (2010) Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods. Artif Organs 34(5):E168–E176. https://doi.org/10.1111/j.1525-1594.2009.00978.x
doi: 10.1111/j.1525-1594.2009.00978.x
Ma B, Wang X, Wu C, Chang J (2014) Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater 1(1):81–89
doi: 10.1093/rb/rbu009
Mirsadraee S, Wilcox HE, Korossis SA, Kearney JN, Watterson KG, Fisher J, Ingham E (2006) Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng 12(4):763–773. https://doi.org/10.1089/ten.2006.12.763
doi: 10.1089/ten.2006.12.763
Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J, Ingham E (2007) Biocompatibility of acellular human pericardium. J Surg Res 143(2):407–414. https://doi.org/10.1016/j.jss.2007.01.026
doi: 10.1016/j.jss.2007.01.026
Montagner G, Trojan D, Cogliati E, Manea F, Vantini A, Paolin A (2018) Stability analysis of the antibiotic cocktail used by Treviso tissue bank foundation for tissues decontamination. Cell Tissue Bank 19(4):721–726. https://doi.org/10.1007/s10561-018-9725-y
doi: 10.1007/s10561-018-9725-y
Paolin A, Spagnol L, Battistella G, Trojan D (2018) Evaluation of allograft decontamination with two different antibiotic cocktails at the Treviso Tissue Bank Foundation. PLoS One. 13(8):e0201792. https://doi.org/10.1371/journal.pone.0201792
doi: 10.1371/journal.pone.0201792
Rémi E, Khelil N, Di Centa I, Roques C, Ba M, Medjahed-Hamidi F, Chaubet F, Letourneur D, Lansac E, Meddahi-Pellé A (2011) Pericardial processing: challenges, outcomes and future prospects. In: Pignatello R (ed.) Biomaterials science and engineering. InTech, Shangai, pp 437–456.
Rodriguez ER, Tan CD (2017) Structure and anatomy of the human pericardium. Prog Cardiovasc Dis 59(4):327–340
doi: 10.1016/j.pcad.2016.12.010
Serafini A, Riello E, Trojan D, Cogliati E, Palù G, Manganelli R, Paolin A (2016) Evaluation of new antibiotic cocktails against contaminating bacteria found in allograft tissues. Cell Tissue Bank 17(4):619–628. https://doi.org/10.1007/s10561-016-9581-6
doi: 10.1007/s10561-016-9581-6
Vinci MC, Tessitore G, Castiglioni L, Prandi F, Soncini M, Santoro R, Consolo F, Colazzo F, Micheli B, Sironi L, Polvani G, Pesce M (2013) Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS One. 8(5):e64769. https://doi.org/10.1371/journal.pone.0064769
doi: 10.1371/journal.pone.0064769
Wollmann L, Suss P, Mendonça J, Luzia C, Schittini A, Rosa GWXD, Costa F, Tuon FF (2019) Characterization of decellularized human pericardium for tissue engineering and regenerative medicine applications. Arq Bras Cardiol 113(1):11–17