A tapt1 knock-out zebrafish line with aberrant lens development and impaired vision models human early-onset cataract.


Journal

Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 28 10 2022
accepted: 19 12 2022
pubmed: 26 1 2023
medline: 3 3 2023
entrez: 25 1 2023
Statut: ppublish

Résumé

Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.

Identifiants

pubmed: 36697720
doi: 10.1007/s00439-022-02518-w
pii: 10.1007/s00439-022-02518-w
doi:

Substances chimiques

Membrane Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

457-476

Subventions

Organisme : Bijzonder Onderzoeksfonds UGent
ID : BOF.GOA.2021.0004
Organisme : Universiteit Gent
ID : BOF24Y2019003301
Organisme : FWO
ID : 12Q5920N
Organisme : FWO
ID : 1842323N

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26:78–98. https://doi.org/10.1016/j.preteyeres.2006.10.003
doi: 10.1016/j.preteyeres.2006.10.003 pubmed: 17166758
Aose M, Linbo TH, Lawrence O et al (2017) The occhiolino (Occ) mutant zebrafish, a model for development of the optical function in the biological lens. Dev Dyn 246:915–924. https://doi.org/10.1002/dvdy
doi: 10.1002/dvdy pubmed: 28422363 pmcid: 6800130
Ashery-Padan R, Marquardt T, Zhou X, Gruss P (2000) Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev 14:2701–2711. https://doi.org/10.1101/gad.184000
doi: 10.1101/gad.184000 pubmed: 11069887 pmcid: 317031
Atia Crespo C, Soroldoni D, Knust E (2018) A novel transgenic zebrafish line for red opsin expression in outer segments of photoreceptor cells. Dev Dyn 247:951–959. https://doi.org/10.1002/dvdy
doi: 10.1002/dvdy
Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C et al (2010) Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet 87:382–391. https://doi.org/10.1016/j.ajhg.2010.07.022
doi: 10.1016/j.ajhg.2010.07.022 pubmed: 20705279 pmcid: 2933343
Bassik MC, Kampmann M, Lebbink RJ et al (2013) A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152:909–922. https://doi.org/10.1016/j.cell.2013.01.030
doi: 10.1016/j.cell.2013.01.030 pubmed: 23394947 pmcid: 3652613
Bek JW, de Clercq A, de Saffel H et al (2021) Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. J Fish Biol 98:1007–1017. https://doi.org/10.1111/jfb.14335
doi: 10.1111/jfb.14335 pubmed: 32242924
Berry V, Ionides A, Pontikos N et al (2020) The genetic landscape of crystallins in congenital cataract. Orphanet J Rare Dis 15:1–17. https://doi.org/10.1186/s13023-020-01613-3
doi: 10.1186/s13023-020-01613-3
Boel A, Steyaert W, de Rocker N et al (2016) BATCH-GE: batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330. https://doi.org/10.1038/srep30330
doi: 10.1038/srep30330 pubmed: 27461955 pmcid: 4962088
Boel A, de Saffel H, Steyaert W et al (2018) CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. DMM Dis Models Mech 11:dmm035352. https://doi.org/10.1242/dmm.035352
doi: 10.1242/dmm.035352
Brady JP, Garland D, Duglas-Tabor Y et al (1997) Targeted disruption of the mouse A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein B-crystallin. Dev Biol Commun Laszlo Lorand 94:884–889. https://doi.org/10.1073/pnas.94.3.884
doi: 10.1073/pnas.94.3.884
Brockerhoff SE (2006) Measuring the optokinetic response of zebrafish larvae. Nat Protoc 1:2448–2451. https://doi.org/10.1038/nprot.2006.255
doi: 10.1038/nprot.2006.255 pubmed: 17406490
Brown NAP, Vrensen G, Shun-Shin GA, Willekens B (1989) Lamellar separation in the human lens: the case for fibre folds. A combined in vivo and electron microscopy study. Eye (basingstoke) 3:597–605. https://doi.org/10.1038/eye.1989.93
doi: 10.1038/eye.1989.93
Cox BD, de Simone A, Tornini VA et al (2018) In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone. Curr Biol 28:3937-3947.e4. https://doi.org/10.1016/j.cub.2018.10.052
doi: 10.1016/j.cub.2018.10.052 pubmed: 30503623 pmcid: 6298855
Cronin T et al (2010) The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ 17:1199–1210. https://doi.org/10.1038/cdd.2010.2
doi: 10.1038/cdd.2010.2 pubmed: 20139892
Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88:151–164. https://doi.org/10.1016/j.exer.2008.08.002
doi: 10.1016/j.exer.2008.08.002 pubmed: 18773892
Davidson RK, Waters JG, Kevorkian L et al (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8:124. https://doi.org/10.1186/ar2013
doi: 10.1186/ar2013
den Hollander AI, McGee TL, Ziviello C et al (2009) A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Investig Ophthalmol Vis Sci 50:1864–1872. https://doi.org/10.1167/iovs.08-2497
doi: 10.1167/iovs.08-2497
Devi S, Markandeya Y, Maddodi N et al (2013) Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res 26:348–356. https://doi.org/10.1111/pcmr.12083
doi: 10.1111/pcmr.12083 pubmed: 23452348 pmcid: 3682403
El-Brolosy MA, Stainier DYR (2017) Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet 13:e1006780. https://doi.org/10.1371/journal.pgen.1006780
doi: 10.1371/journal.pgen.1006780 pubmed: 28704371 pmcid: 5509088
Ellard S, Baple EL, Berry I et al (2019) ACGS best practice guidelines for variant classification 2019. Association for Clinical Genomic Science. https://doi.org/10.1101/531210
Fernandes AM, Fero K, Arrenberg AB et al (2012) Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 22:2042–2047. https://doi.org/10.1016/j.cub.2012.08.016
doi: 10.1016/j.cub.2012.08.016 pubmed: 23000151 pmcid: 3494761
Fischbarg J, Diecke FPJ, Kuang K et al (1999) Transport of fluid by lens epithelium. Am J Physiol Cell Physiol 276:C548–C557. https://doi.org/10.1152/ajpcell.1999.276.3.C548
doi: 10.1152/ajpcell.1999.276.3.C548
Flanagan-Steet H, Aarnio M, Kwan B et al (2016) Cathepsin-mediated alterations in TGFß-related signaling underlie disrupted cartilage and bone maturation associated with impaired lysosomal targeting. J Bone Miner Res 31:535–548. https://doi.org/10.1002/jbmr.2722
doi: 10.1002/jbmr.2722 pubmed: 26404503
Friederichs JM, Gardner JM, Smoyer CJ et al (2012) Genetic analysis of Mps3 SUN domain mutants in Saccharomyces cerevisiae reveals an interaction with the SUN-like protein Slp1. G3 Genes Genom Genet 2:1703–1718. https://doi.org/10.1534/G3.112.004614/-/DC1/TABLES2.PDF
doi: 10.1534/G3.112.004614/-/DC1/TABLES2.PDF
Guillemyn B, Nampoothiri S, Syx D et al (2021) Loss of TANGO1 leads to absence of bone mineralization. JBMR plus 5:e10451. https://doi.org/10.1002/jbm4.10451
doi: 10.1002/jbm4.10451 pubmed: 33778321 pmcid: 7990155
He H, Wang C, Tang Q et al (2018) Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomed Pharmacother 101:981–987. https://doi.org/10.1016/j.biopha.2018.02.082
doi: 10.1016/j.biopha.2018.02.082 pubmed: 29635908
Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723. https://doi.org/10.1016/j.cell.2015.09.053
doi: 10.1016/j.cell.2015.09.053 pubmed: 26496610
Hejtmancik JF, Riazuddin SA, McGreal R et al (2015) Lens biology and biochemistry. Progr Mol Biol Transl Sci 134:169–201. https://doi.org/10.1016/bs.pmbts.2015.04.007
doi: 10.1016/bs.pmbts.2015.04.007
Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA (2017) Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 15:1–16. https://doi.org/10.1186/s12915-016-0346-2
doi: 10.1186/s12915-016-0346-2
Howell GR, Shindo M, Murray S et al (2007) Mutation of a ubiquitously expressed mouse transmembrane protein (Tapt1) causes specific skeletal homeotic transformations. Genetics 175:699–707. https://doi.org/10.1534/genetics.106.065177
doi: 10.1534/genetics.106.065177 pubmed: 17151244 pmcid: 1800629
Jonikas MC, Collins SR, Denic V et al (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697. https://doi.org/10.1126/science.1167983
doi: 10.1126/science.1167983 pubmed: 19325107 pmcid: 2877488
Kakakhel M, Tebbe L, Makia MS et al (2010) Syntaxin 3 is essential for photoreceptor outer segment protein trafficking and survival. PNAS 117:20615–20624. https://doi.org/10.1073/pnas.2010751117/-/DCSupplemental
doi: 10.1073/pnas.2010751117/-/DCSupplemental
Kakrana A, Yang A, Anand D et al (2017) iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Res 46:875–885. https://doi.org/10.1093/nar/gkx837
doi: 10.1093/nar/gkx837
Kosuta C, Daniel K, Johnstone DL et al (2018) High-throughput dna extraction and genotyping of 3dpf zebrafish larvae by fin clipping. J Visual Exp 2018:e58024. https://doi.org/10.3791/58024
doi: 10.3791/58024
Lamb TD (2022) Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. J Physiol. https://doi.org/10.1113/JP282058
doi: 10.1113/JP282058 pubmed: 35412676
Liu W, Huang D, Guo R, Ji J (2021) Pathological changes of the anterior lens capsule. J Ophthalmol. https://doi.org/10.1155/2021/9951032
doi: 10.1155/2021/9951032 pubmed: 35003788 pmcid: 8731298
Liu C-F, Ou-Yang Y, Huang C-Y et al (2022) Zebrafish (Danio rerio) is an economical and efficient animal model for screening potential anti-cataract compounds. Transl Vis Sci Technol 11:21. https://doi.org/10.1167/tvst.11.8.21
doi: 10.1167/tvst.11.8.21 pubmed: 36239966 pmcid: 9586132
Malicki J, Avanesov A, Li J et al (2011) Analysis of cilia structure and function in zebrafish. Methods Cell Biol. https://doi.org/10.1016/B978-0-12-387036-0.000003-7
doi: 10.1016/B978-0-12-387036-0.000003-7 pubmed: 21550439
Morishita H, Eguchi T, Tsukamoto S et al (2021) Organelle degradation in the lens by PLAAT phospholipases. Nature 592:634–683. https://doi.org/10.1038/s41586-021-03439-w
doi: 10.1038/s41586-021-03439-w pubmed: 33854238
Mueller KP, Neuhauss SCF (2012) Light perception: more than meets the eyes. Curr Biol 22:R912–R914. https://doi.org/10.1016/J.CUB.2012.08.038
doi: 10.1016/J.CUB.2012.08.038 pubmed: 23137685
Muto A, Lal P, Ailani D et al (2017) Activation of the hypothalamic feeding centre upon visual prey detection. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms15029
doi: 10.1038/ncomms15029
Nakao T, Tsujikawa M, Notomi S et al (2012) The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7:32472. https://doi.org/10.1371/journal.pone.0032472
doi: 10.1371/journal.pone.0032472
Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22. https://doi.org/10.1146/annurev.genet.39.073003.105049
doi: 10.1146/annurev.genet.39.073003.105049 pubmed: 16285850
Ogawa Y, Shiraki T, Asano Y et al (2019) Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish. Proc Natl Acad Sci 116:4651–4660. https://doi.org/10.1073/pnas.1812884116
doi: 10.1073/pnas.1812884116 pubmed: 30765521 pmcid: 6410792
Patel N, Anand D, Monies D et al (2017) Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 136:205–225. https://doi.org/10.1007/s00439-016-1747-6
doi: 10.1007/s00439-016-1747-6 pubmed: 27878435
Plagnol V, Curtis J, Epstein M et al (2012) A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28:2747–2754. https://doi.org/10.1093/bioinformatics/bts526
doi: 10.1093/bioinformatics/bts526 pubmed: 22942019 pmcid: 3476336
Reis LM, Semina EV (2019) Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet 138:847–863. https://doi.org/10.1007/s00439-018-1932-x
doi: 10.1007/s00439-018-1932-x pubmed: 30187164
Renn J, Winkler C (2008) Osterix-mCherry transgenic medaka for in vivo imaging of bone formation. Dev Dyn 238:241–248. https://doi.org/10.1002/dvdy.21836
doi: 10.1002/dvdy.21836
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30 pubmed: 25741868 pmcid: 4544753
Richardson R, Tracey-White D, Webster A, Moosajee M (2017) The zebrafish eye—a paradigm for investigating human ocular genetics. Eye (basingstoke) 31:68–86. https://doi.org/10.1038/EYE.2016.198
doi: 10.1038/EYE.2016.198
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Semina EV, Bosenko DV, Zinkevich NC et al (2006) Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Dev Biol 299:63–77. https://doi.org/10.1016/j.ydbio.2006.07.005
doi: 10.1016/j.ydbio.2006.07.005 pubmed: 16973147
Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. CMLS Cell Mol Life Sci 54:1299–1315. https://doi.org/10.1007/s000180050256
doi: 10.1007/s000180050256 pubmed: 9893707
Sipilä L, Ruotsalainen H, Sormunen R et al (2007) Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J Biol Chem 282:33381–33388. https://doi.org/10.1074/jbc.M704198200
doi: 10.1074/jbc.M704198200 pubmed: 17873278
Sohaskey ML, Jiang Y, Zhao JJ et al (2010) Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. J Cell Biol 189:511–525. https://doi.org/10.1083/jcb.201003006
doi: 10.1083/jcb.201003006 pubmed: 20440000 pmcid: 2867309
Soules KA, Link BA (2005) Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev Biol 5:1–16. https://doi.org/10.1186/1471-213X-5-12
doi: 10.1186/1471-213X-5-12
Streisinger G, Westerfield M (1993) The zebrafish book: a guide for the laboratory use of zebrafish Danio (Brachydanio) rerio. M Westerfield, Eugene
Symoens S, Barnes AM, Gistelinck C et al (2015) Genetic defects in TAPT1 disrupt ciliogenesis and cause a complex lethal osteochondrodysplasia. Am J Hum Genet 97:521–534. https://doi.org/10.1016/j.ajhg.2015.08.009
doi: 10.1016/j.ajhg.2015.08.009 pubmed: 26365339 pmcid: 4596895
Taler K, Weiss O, Rotem-Bamberger S et al (2020) Lysyl hydroxylase 3 is required for normal lens capsule formation and maintenance of lens epithelium integrity and fate. Dev Biol 458:177–188. https://doi.org/10.1016/j.ydbio.2019.10.020
doi: 10.1016/j.ydbio.2019.10.020 pubmed: 31669351
Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. https://doi.org/10.1038/nprot.2007.514
doi: 10.1038/nprot.2007.514 pubmed: 18193022
Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703–716. https://doi.org/10.1016/s0896-6273(04)00268-5
doi: 10.1016/s0896-6273(04)00268-5 pubmed: 15182712
Vanhauwaert S, van Peer G, Rihani A et al (2014) Expressed repeat elements improve RT-qPCR normalization across a wide range of zebrafish gene expression studies. PLoS One 9:e109091. https://doi.org/10.1371/JOURNAL.PONE.0109091
doi: 10.1371/JOURNAL.PONE.0109091 pubmed: 25310091 pmcid: 4195698
Won J, Gifford E, Smith RS et al (2009) RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum Mol Genet 18:4329–4339. https://doi.org/10.1093/hmg/ddp385
doi: 10.1093/hmg/ddp385 pubmed: 19679561 pmcid: 2766293
Zhang S, Xu C, Larrimore KE, Ng DTW (2017) Slp1-Emp65: a guardian factor that protects folding polypeptides from promiscuous degradation. Cell 171:346–357. https://doi.org/10.1016/j.cell.2017.08.036
doi: 10.1016/j.cell.2017.08.036 pubmed: 28919078
Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6
doi: 10.1038/s41467-019-09234-6 pubmed: 30944313 pmcid: 6447622
Zhou C, Cui Y, Yang Y et al (2021) Runx1 protects against the pathological progression of osteoarthritis. Bone Research 9:1–12. https://doi.org/10.1038/s41413-021-00173-x
doi: 10.1038/s41413-021-00173-x

Auteurs

Tamara Jarayseh (T)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Brecht Guillemyn (B)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Hanna De Saffel (H)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Jan Willem Bek (JW)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Delfien Syx (D)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Sofie Symoens (S)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Yannick Gansemans (Y)

Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.

Filip Van Nieuwerburgh (F)

Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.

Sujatha Jagadeesh (S)

Department of Genetics, Mediscan Systems, Chennai, India.

Jayarekha Raja (J)

Department of Genetics, Mediscan Systems, Chennai, India.

Fransiska Malfait (F)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Paul J Coucke (PJ)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Adelbert De Clercq (A)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

Andy Willaert (A)

Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. andy.willaert@ugent.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH