Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
11
06
2021
accepted:
09
11
2022
entrez:
25
1
2023
pubmed:
26
1
2023
medline:
28
1
2023
Statut:
ppublish
Résumé
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Identifiants
pubmed: 36697862
doi: 10.1038/s41586-022-05546-8
pii: 10.1038/s41586-022-05546-8
doi:
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
639-649Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/00044409
Pays : United Kingdom
Organisme : NICHD NIH HHS
ID : R01 HD098867
Pays : United States
Organisme : Medical Research Council
ID : MR/K021133/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/000PR10353
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/000PR10356
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 100974/C/13/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 220876/Z/20/Z
Pays : United Kingdom
Organisme : NICHD NIH HHS
ID : R01 HD102318
Pays : United States
Informations de copyright
© 2023. Springer Nature Limited.
Références
Macpherson, A. J., de Aguero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).
doi: 10.1038/nri.2017.58
Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front. Immunol. 12, 683022 (2021).
doi: 10.3389/fimmu.2021.683022
Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).
doi: 10.1126/science.aad9378
Jain, N. The early life education of the immune system: moms, microbes and (missed) opportunities. Gut Microbes 12, 1824564 (2020).
doi: 10.1080/19490976.2020.1824564
Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ — timed succession of non-redundant phases to establish mucosal host–microbial homeostasis after birth. Immunology 159, 15–25 (2020).
doi: 10.1111/imm.13149
Torow, N., Marsland, B. J., Hornef, M. W. & Gollwitzer, E. S. Neonatal mucosal immunology. Mucosal Immunol. 10, 5–17 (2017).
doi: 10.1038/mi.2016.81
Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4
doi: 10.1016/j.immuni.2018.12.010
Stras, S. F. et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev. Cell 51, 357–373 (2019).
doi: 10.1016/j.devcel.2019.09.008
Zhang, X. et al. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci. Transl. Med. 6, 238ra272 (2014).
doi: 10.1126/scitranslmed.3008748
Tissier, H. Recherches sur la flore intestinale des nourrissons: (état normal et pathologique). Doctoral dissertation, BIU Santé (1900).
He, Q. et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 12, 1794266 (2020).
doi: 10.1080/19490976.2020.1794266
Stinson, L. et al. Comparison of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and term deliveries. Front. Microbiol. 11, 415 (2020).
doi: 10.3389/fmicb.2020.00415
Younge, N. et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 4, e127806 (2019).
doi: 10.1172/jci.insight.127806
Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol. 10, 1124 (2019).
doi: 10.3389/fmicb.2019.01124
Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra265 (2014).
D’Argenio, V. The prenatal microbiome: a new player for human health. High Throughput 7, 38 (2018).
doi: 10.3390/ht7040038
Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).
doi: 10.1371/journal.pbio.1001631
Stinson, L. F., Payne, M. S. & Keelan, J. A. Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369 (2017).
doi: 10.1080/1040841X.2016.1211088
Walker, R. W., Clemente, J. C., Peter, I. & Loos, R. J. F. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr. Obes. 12 (Suppl. 1), 3–17 (2017).
doi: 10.1111/ijpo.12217
Bolte, E. E., Moorshead, D. & Aagaard, K. M. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med. 14, 4 (2022).
doi: 10.1186/s13073-021-01005-7
Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).
doi: 10.1186/s40168-020-00875-0
Blaser, M. J. et al. Lessons learned from the prenatal microbiome controversy. Microbiome 9, 8 (2021). Discussion about the prenatal microbiome controversy by several experts in the microbiome field.
doi: 10.1186/s40168-020-00946-2
Bushman, F. D. De-discovery of the placenta microbiome. Am. J. Obstet. Gynecol. 220, 213–214 (2019).
doi: 10.1016/j.ajog.2018.11.1093
Editorial. Microbiome studies and “blue whales in the Himalayas”. Lancet Infect. Dis. 18, 925 https://doi.org/10.1016/S1473-3099(18)30503-6 (2018).
Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).
doi: 10.1038/mi.2016.141
Perez-Muñoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).
doi: 10.1186/s40168-017-0268-4
Segata, N. No bacteria found in healthy placentas. Nature 572, 317–318 (2019).
doi: 10.1038/d41586-019-02262-8
Walter, J. & Hornef, M. W. A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9, 5 (2021).
doi: 10.1186/s40168-020-00979-7
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019). Sequencing study using robust controls, concluding that there is no evidence for a placental microbiome.
doi: 10.1038/s41586-019-1451-5
Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021). The only sequencing study so far that characterized the microbial populations in human fetuses using meconium samples obtained after C-section, concluding that there is no evidence for a microbiota.
doi: 10.1038/s41564-021-00904-0
Kuperman, A. A. et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG 127, 159–169 (2020).
doi: 10.1111/1471-0528.15896
Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).
doi: 10.1186/s40168-016-0172-3
Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).
doi: 10.1186/s40168-018-0575-4
Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).
doi: 10.1016/j.ajog.2018.10.018
Sterpu, I. et al. No evidence for a placental microbiome in human pregnancies at term. Am. J. Obstet. Gynecol. 224, 296.e1–296.e23 (2021).
doi: 10.1016/j.ajog.2020.08.103
de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).
doi: 10.1038/s41564-018-0202-y
Olomu, I. N. et al. Elimination of “kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome. BMC Microbiol. 20, 157 (2020).
doi: 10.1186/s12866-020-01839-y
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
doi: 10.1186/s12915-014-0087-z
Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020). Microbial characterization of fetal samples obtained after vaginal delivery, reporting highly limited bacterial colonization.
doi: 10.1038/s41591-020-0761-3
Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021). Analysis of fetal tissues obtained after medical termination of pregnancy in the second trimester and vaginal delivery, reporting microbial colonization of the fetus and bacterial priming of fetal immune cells.
doi: 10.1016/j.cell.2021.04.039
Li, Y. et al. In utero human intestine harbors unique metabolomic features including bacterial metabolites. JCI Insight 5, e138751 (2020). Characterization of the microbiota in fetuses obtained by vaginal delivery, reporting no evidence for bacterial colonization.
doi: 10.1172/jci.insight.138751
Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 6, 87 (2018).
doi: 10.1186/s40168-018-0475-7
Liu, Y. et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am. J. Obstet. Gynecol. 223, 248.e1–248.e21 (2020).
doi: 10.1016/j.ajog.2020.01.056
Rehbinder, E. M. et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am. J. Obstet. Gynecol. 219, 289.e1–289.e12 (2018).
doi: 10.1016/j.ajog.2018.05.028
de Goffau, M. C., Charnock-Jones, D. S., Smith, G. C. S. & Parkhill, J. Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome 9, 6 (2021).
doi: 10.1186/s40168-020-00949-z
Powell, S., Perry, J. & Meikle, D. Microbial contamination of non-disposable instruments in otolaryngology out-patients. J. Laryngol. Otol. 117, 122–125 (2003).
doi: 10.1258/002221503762624567
Wistrand, C., Soderquist, B. & Sundqvist, A. S. Time-dependent bacterial air contamination of sterile fields in a controlled operating room environment: an experimental intervention study. J. Hosp. Infect. 110, 97–102 (2021).
doi: 10.1016/j.jhin.2021.01.016
Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). Study demonstrating that aspects of prenatal immune development induced by maternal microbial compounds can occur in the absence of live microorganisms in the fetus.
doi: 10.1126/science.aad2571
Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).
doi: 10.1038/s41586-020-2745-3
Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, tourists, or invaders? Front. Immunol. 9, 208 (2018).
doi: 10.3389/fimmu.2018.00208
Cherry, S. H., Filler, M. & Harvey, H. Lysozyme content of amniotic fluid. Am. J. Obstet. Gynecol. 116, 639–642 (1973).
doi: 10.1016/S0002-9378(15)33127-6
Soto, E. et al. Human β-defensin-2: a natural antimicrobial peptide present in amniotic fluid participates in the host response to microbial invasion of the amniotic cavity. J. Matern. Fetal Neonatal Med. 20, 15–22 (2007).
doi: 10.1080/14767050601036212
Reichhardt, M. P. et al. The salivary scavenger and agglutinin in early life: diverse roles in amniotic fluid and in the infant intestine. J. Immunol. 193, 5240–5248 (2014).
doi: 10.4049/jimmunol.1401631
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
doi: 10.1038/nbt.3981
Grettenberger, C. L. Novel Gloeobacterales spp. from diverse environments across the globe. mSphere 6, e0006121 (2021).
doi: 10.1128/mSphere.00061-21
Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4680–4687 (2011).
doi: 10.1073/pnas.1002611107
Megli, C. J. & Coyne, C. B. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat. Rev. Microbiol. 20, 67–82 (2022).
doi: 10.1038/s41579-021-00610-y
Armistead, B., Oler, E., Adams Waldorf, K. & Rajagopal, L. The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. J. Mol. Biol. 431, 2914–2931 (2019).
doi: 10.1016/j.jmb.2019.01.035
Dodd, J. M. & Crowther, C. A. Misoprostol for induction of labour to terminate pregnancy in the second or third trimester for women with a fetal anomaly or after intrauterine fetal death. Cochrane Database Syst. Rev. 2010, CD004901 (2010).
Nijman, T. A. et al. Association between infection and fever in terminations of pregnancy using misoprostol: a retrospective cohort study. BMC Pregnancy Childbirth 17, 7 (2017).
doi: 10.1186/s12884-016-1188-1
Rackaityte, E. et al. Corroborating evidence refutes batch effect as explanation for fetal bacteria. Microbiome 9, 10 (2021).
doi: 10.1186/s40168-020-00948-0
Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
doi: 10.1093/femsre/fux030
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).
doi: 10.1073/pnas.1002601107
Dos Santos, S. J. et al. Early neonatal meconium does not have a demonstrable microbiota determined through use of robust negative controls with cpn60-based microbiome profiling. Microbiol. Spectr. 9, e0006721 (2021).
doi: 10.1128/Spectrum.00067-21
Heida, F. H. et al. Weight shapes the intestinal microbiome in preterm infants: results of a prospective observational study. BMC Microbiol. 21, 219 (2021).
doi: 10.1186/s12866-021-02279-y
Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
doi: 10.1016/j.chom.2015.04.004
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
doi: 10.1038/s41586-019-1560-1
Podlesny, D. & Fricke, W. F. Strain inheritance and neonatal gut microbiota development: a meta-analysis. Int. J. Med. Microbiol. 311, 151483 (2021).
doi: 10.1016/j.ijmm.2021.151483
Bajorek, S. et al. Initial microbial community of the neonatal stomach immediately after birth. Gut Microbes 10, 289–297 (2019).
doi: 10.1080/19490976.2018.1520578
Kim, S. M. et al. Gastric fluid versus amniotic fluid analysis for the identification of intra-amniotic infection due to Ureaplasma species. J. Matern. Fetal Neonatal Med. 29, 2579–2587 (2016).
Martin, R. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 11, e0158498 (2016).
doi: 10.1371/journal.pone.0158498
Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra381 (2016).
doi: 10.1126/scitranslmed.aad0917
Mitchell, C. M. et al. Delivery mode affects stability of early infant gut microbiota. Cell Rep. Med. 1, 100156 (2020).
doi: 10.1016/j.xcrm.2020.100156
Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).
doi: 10.1016/j.chom.2018.06.005
Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).
doi: 10.1016/j.chom.2018.06.007
Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334 (2020).
doi: 10.1016/j.cell.2020.08.047
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
doi: 10.1186/s40168-018-0605-2
Dyrhovden, R. et al. Managing contamination and diverse bacterial loads in 16S rRNA deep sequencing of clinical samples: implications of the law of small numbers. mBio 12, e0059821 (2021).
doi: 10.1128/mBio.00598-21
Laurence, M., Hatzis, C. & Brash, D. E. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 9, e97876 (2014).
doi: 10.1371/journal.pone.0097876
Read, S. J. Recovery efficiences on nucleic acid extraction kits as measured by quantitative LightCycler PCR. Mol. Pathol. 54, 86–90 (2001).
doi: 10.1136/mp.54.2.86
Walker, S. P. et al. Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis. Sci. Rep. 10, 16356 (2020).
doi: 10.1038/s41598-020-73403-7
Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, K. E. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6, 13–18 (1998).
doi: 10.1155/1998/68382
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).
doi: 10.1016/j.immuni.2009.08.020
Wesemann, D. R. et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501, 112–115 (2013).
doi: 10.1038/nature12496
Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274–278 (2020).
doi: 10.1038/s41586-020-2564-6
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019).
doi: 10.1016/j.cell.2019.01.041
Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).
doi: 10.1084/jem.20200275
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).
doi: 10.1038/nature12726
McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).
doi: 10.1038/nature22795
Rechavi, E. et al. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci. Transl. Med. 7, 276ra225 (2015).
doi: 10.1126/scitranslmed.aaa0072
Casas, R. & Bjorksten, B. Detection of Fel d 1-immunoglobulin G immune complexes in cord blood and sera from allergic and non-allergic mothers. Pediatr. Allergy Immunol. 12, 59–64 (2001).
doi: 10.1034/j.1399-3038.2001.012002059.x
Szepfalusi, Z. et al. Transplacental priming of the human immune system with environmental allergens can occur early in gestation. J. Allergy Clin. Immunol. 106, 530–536 (2000).
doi: 10.1067/mai.2000.108710
Vuillermin, P. J. et al. Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nat. Commun. 11, 1452 (2020).
doi: 10.1038/s41467-020-14552-1
Ganal-Vonarburg, S. C., Hornef, M. W. & Macpherson, A. J. Microbial–host molecular exchange and its functional consequences in early mammalian life. Science 368, 604–607 (2020).
doi: 10.1126/science.aba0478
Lockhart, P. B. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).
doi: 10.1161/CIRCULATIONAHA.107.758524
Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).
doi: 10.1038/nrmicro.2017.42
De Boeck, I. et al. Lactobacilli Have a Niche in the Human Nose. Cell Rep. 31, 107674 (2020).
doi: 10.1016/j.celrep.2020.107674
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).
doi: 10.1038/nrmicro2297
Collins, J. et al. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol. Microbiol. 85, 862–877 (2012).
doi: 10.1111/j.1365-2958.2012.08148.x
Kankainen, M. et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).
doi: 10.1073/pnas.0908876106
Rampersaud, R. et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J. Bacteriol. 193, 1034–1041 (2011).
doi: 10.1128/JB.00694-10
Wuyts, S. et al. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2, e00061-17 (2017).
doi: 10.1128/mSystems.00061-17
Weinberg, E. D. The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med. 40, 578–583 (1997).
doi: 10.1353/pbm.1997.0072
Hazards, E. Po. B. et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. EFSA J. 16, e05131 (2018).
Cannon, J. P., Lee, T. A., Bolanos, J. T. & Danziger, L. H. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur. J. Clin. Microbiol. Infect. Dis. 24, 31–40 (2005).
doi: 10.1007/s10096-004-1253-y
Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).
doi: 10.1038/s41559-018-0617-0
Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46 (Suppl. 5), S350–359 (2008).
doi: 10.1086/533591
Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 17, 32–37 (2014).
doi: 10.1016/j.mib.2013.11.004
Powers, M. E. & Bubeck Wardenburg, J. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 10, e1003871 (2014).
doi: 10.1371/journal.ppat.1003871
Healy, C. M., Baker, C. J., Palazzi, D. L., Campbell, J. R. & Edwards, M. S. Distinguishing true coagulase-negative Staphylococcus infections from contaminants in the neonatal intensive care unit. J. Perinatol. 33, 52–58 (2013).
doi: 10.1038/jp.2012.36
Michels, R., Last, K., Becker, S. L. & Papan, C. Update on coagulase-negative staphylococci–what the clinician should know. Microorganisms 9, 830 (2021).
doi: 10.3390/microorganisms9040830
Marchant, E. A., Boyce, G. K., Sadarangani, M. & Lavoie, P. M. Neonatal sepsis due to coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 586076 (2013).
doi: 10.1155/2013/586076
Zhen, X., Lundborg, C. S., Sun, X., Hu, X. & Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob. Resist. Infect. Control 8, 137 (2019).
doi: 10.1186/s13756-019-0590-7
Kamal, S. M., Simpson, D. J., Wang, Z., Ganzle, M. & Romling, U. Horizontal transmission of stress resistance genes shape the ecology of beta- and gamma-proteobacteria. Front. Microbiol. 12, 696522 (2021).
doi: 10.3389/fmicb.2021.696522
Kramer, A., Schwebke, I. & Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130 (2006).
doi: 10.1186/1471-2334-6-130
Neely, A. N. & Maley, M. P. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clin. Microbiol. 38, 724–726 (2000).
doi: 10.1128/JCM.38.2.724-726.2000
Bizzarro, M. J. et al. Neonatal sepsis 2004–2013: the rise and fall of coagulase-negative staphylococci. J. Pediatr. 166, 1193–1199 (2015).
doi: 10.1016/j.jpeds.2015.02.009
Dong, Y., Speer, C. P. & Glaser, K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 9, 621–633 (2018).
doi: 10.1080/21505594.2017.1419117
Glaser, M. A., Hughes, L. M., Jnah, A. & Newberry, D. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv. Neonatal Care 21, 49–60 (2021).
doi: 10.1097/ANC.0000000000000769
Nan, C. et al. Maternal group B Streptococcus-related stillbirth: a systematic review. BJOG 122, 1437–1445 (2015).
doi: 10.1111/1471-0528.13527
Vazquez-Boland, J. A., Krypotou, E. & Scortti, M. Listeria placental infection. mBio 8, e00949–17 (2017).
doi: 10.1128/mBio.00949-17
DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods. J. Perinat. Med. 38, 503–513 (2010).
doi: 10.1515/jpm.2010.078
DiGiulio, D. B. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056 (2008). Sequencing study of amniotic fluid of 166 women in preterm labour with PCR and culture that showed near-complete positive correlation of bacterial detection with neonatal morbidity and mortality.
doi: 10.1371/journal.pone.0003056
DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).
DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 38, 495–502 (2010).
doi: 10.1515/jpm.2010.076
Enders, G., Daiminger, A., Bader, U., Exler, S. & Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).
doi: 10.1016/j.jcv.2011.07.005
Luckey, T. D. Germfree Life and Gnotobiology (Academic Press, 1963).
Rasmussen, S. A., Jamieson, D. J., Honein, M. A. & Petersen, L. R. Zika virus and birth defects–reviewing the evidence for causality. N. Engl. J. Med. 374, 1981–1987 (2016).
doi: 10.1056/NEJMsr1604338
Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–1170 (1998).
doi: 10.1128/MMBR.62.4.1157-1170.1998
Gordon, H. A. & Pesti, L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).
doi: 10.1128/br.35.4.390-429.1971
Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).
doi: 10.1126/science.291.5505.881
Wostman, B. S. Germfree and Gnotobiotic Animal Models. Background and Applications (CRC Press, 1996).
Arvidsson, C., Hallen, A. & Backhed, F. Generating and analyzing germ-free mice. Curr. Protoc. Mouse Biol. 2, 307–316 (2012).
Carter, P. B., Norin, E. & Swennes, A. G. Gnotobiotics and the microbiome. In The Laboratory Rat 3rd edn (eds Suckow, M. A. et al.) Ch. 21, 827–848 (2020).
Qv, L. et al. Methods for establishment and maintenance of germ-free rat models. Front. Microbiol. 11, 1148 (2020).
doi: 10.3389/fmicb.2020.01148
Schoeb, T. R. & Eaton, K. A. Gnotobiotics (Academic Press, 2017).
Jervis-Bardy, J. et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 3, 19 (2015).
doi: 10.1186/s40168-015-0083-8
Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. mBio 10, e01315-19 (2019).
doi: 10.1128/mBio.01315-19
Jorissen, J. et al. Case–control microbiome study of chronic otitis media with effusion in children points at Streptococcus salivarius as a pathobiont-inhibiting species. mSystems 6, e00056-21 (2021).
doi: 10.1128/mSystems.00056-21
Salzberg, S. Does the placenta have a bacterial microbiome? Forbes (1 June 2020); https://www.forbes.com/sites/stevensalzberg/2020/06/01/does-the-placenta-have-a-bacterial-microbiome/?sh=7ae092ea250b .
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 110, 1253–1262 (2013).
doi: 10.1017/S0007114513000597
Treven, P. et al. Evaluation of human milk microbiota by 16S rRNA gene next-generation sequencing (NGS) and cultivation/MALDI-TOF mass spectrometry identification. Front. Microbiol. 10, 2612 (2019).
doi: 10.3389/fmicb.2019.02612
Bihl, S. et al. When to suspect contamination rather than colonization—lessons from a putative fetal sheep microbiome. Gut Microbes 14, 2005751 (2022).
doi: 10.1080/19490976.2021.2005751
Kennedy, K. M. et al. Over-celling fetal microbial exposure. Cell 184, 5839–5841 (2021).
doi: 10.1016/j.cell.2021.10.026
Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
doi: 10.1016/j.tim.2018.11.003