The field of protein function prediction as viewed by different domain scientists.


Journal

Bioinformatics advances
ISSN: 2635-0041
Titre abrégé: Bioinform Adv
Pays: England
ID NLM: 9918282081306676

Informations de publication

Date de publication:
2022
Historique:
received: 01 07 2022
accepted: 14 08 2022
entrez: 26 1 2023
pubmed: 27 1 2023
medline: 27 1 2023
Statut: epublish

Résumé

Experimental biologists, biocurators, and computational biologists all play a role in characterizing a protein's function. The discovery of protein function in the laboratory by experimental scientists is the foundation of our knowledge about proteins. Experimental findings are compiled in knowledgebases by biocurators to provide standardized, readily accessible, and computationally amenable information. Computational biologists train their methods using these data to predict protein function and guide subsequent experiments. To understand the state of affairs in this ecosystem, centered here around protein function prediction, we surveyed scientists from these three constituent communities. We show that the three communities have common but also idiosyncratic perspectives on the field. Most strikingly, experimentalists rarely use state-of-the-art prediction software, but when presented with predictions, report many to be surprising and useful. Ontologies appear to be highly valued by biocurators, less so by experimentalists and computational biologists, yet controlled vocabularies bridge the communities and simplify the prediction task. Additionally, many software tools are not readily accessible and the predictions presented to the users can be broad and uninformative. We conclude that to meet both the social and technical challenges in the field, a more productive and meaningful interaction between members of the core communities is necessary. Data cannot be shared for ethical/privacy reasons. Supplementary data are available at

Identifiants

pubmed: 36699361
doi: 10.1093/bioadv/vbac057
pii: vbac057
pmc: PMC9710704
doi:

Types de publication

Journal Article

Langues

eng

Pagination

vbac057

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press.

Références

Bioinformatics. 2014 Sep 1;30(17):i609-16
pubmed: 25161254
Nat Rev Genet. 2013 Mar;14(3):157-67
pubmed: 23358380
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Protein Sci. 2006 Jun;15(6):1550-6
pubmed: 16672240
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
Trends Genet. 2013 Nov;29(11):609-10
pubmed: 24138813
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Genome Biol. 2016 Sep 07;17(1):184
pubmed: 27604469
PLoS Comput Biol. 2019 Nov 4;15(11):e1007419
pubmed: 31682632
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
PLoS Comput Biol. 2012;8(7):e1002554
pubmed: 22807660
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12764-9
pubmed: 26385966
Methods Mol Biol. 2017;1446:133-146
pubmed: 27812940
Annu Rev Biochem. 1970;39:977-1042
pubmed: 4320264
Mol Cell. 2020 May 21;78(4):779-784.e5
pubmed: 32362314
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354
pubmed: 33156333
Genome Biol. 2019 Nov 19;20(1):244
pubmed: 31744546
Nat Protoc. 2010 Apr;5(4):725-38
pubmed: 20360767
Bioinformatics. 2009 Feb 1;25(3):406-12
pubmed: 19073592
Bioinformatics. 2020 Jan 15;36(2):422-429
pubmed: 31350877
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612
pubmed: 33237311
PLoS Biol. 2018 Apr 16;16(4):e2002846
pubmed: 29659566
G3 (Bethesda). 2019 Jan 9;9(1):251-267
pubmed: 30463884
BMC Bioinformatics. 2004 Nov 18;5:178
pubmed: 15550167
Bioinformatics. 2018 Jul 1;34(13):i313-i322
pubmed: 29949985
Proteins. 2011 Jul;79(7):2086-96
pubmed: 21671271
Sci Rep. 2016 Aug 26;6:31865
pubmed: 27561554
Genome Biol. 2019 Feb 27;20(1):47
pubmed: 30813962
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
pubmed: 7984417
Nucleic Acids Res. 2019 Jul 2;47(W1):W379-W387
pubmed: 31106361
Oncogene. 1994 Jun;9(6):1799-805
pubmed: 8183579
Nat Methods. 2013 Mar;10(3):221-7
pubmed: 23353650

Auteurs

Rashika Ramola (R)

Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.

Iddo Friedberg (I)

Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.

Predrag Radivojac (P)

Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.

Classifications MeSH