Adsorptive removal of anionic azo dye by Al
Adsorption
Chitosan
Congo red
Magnetic biochar
Pyrolysis temperatures
Wastewater remediation
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
received:
17
10
2022
accepted:
16
01
2023
medline:
7
4
2023
pubmed:
27
1
2023
entrez:
26
1
2023
Statut:
ppublish
Résumé
Magnetic γ-Fe
Identifiants
pubmed: 36701055
doi: 10.1007/s11356-023-25439-1
pii: 10.1007/s11356-023-25439-1
doi:
Substances chimiques
biochar
0
Chitosan
9012-76-4
Azo Compounds
0
Water Pollutants, Chemical
0
Charcoal
16291-96-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
44985-44998Subventions
Organisme : Zhejiang Provincial Natural Science Foundation of China
ID : LTY21B070001
Organisme : the Scientific and Technological Development Project of Taizhou
ID : 22gya08
Organisme : the Science Foundation of Taizhou University for Distinguished Young Scholars
ID : 2018JQ001
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abukhadra MR, Adlii A, Bakry BM (2019) Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr(VI) from water. Int J Biol Macromol 126:402–413. https://doi.org/10.1016/j.ijbiomac.2018.12.225
doi: 10.1016/j.ijbiomac.2018.12.225
Afzal MZ, Sun XF, Liu J, Song C, Wang SG, Javed A (2018) Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci Total Environ 639:560–569. https://doi.org/10.1016/j.scitotenv.2018.05.129
doi: 10.1016/j.scitotenv.2018.05.129
Ahmed MJ, Hameed BH, Hummadi EH (2020) Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohyd Polym 241:116690. https://doi.org/10.1016/j.carbpol.2020.116690
doi: 10.1016/j.carbpol.2020.116690
Al-Salihi S, Jasim AM, Fidalgo MM, Xing Y (2021) Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere 286:131769. https://doi.org/10.1016/j.chemosphere.2021.131769
doi: 10.1016/j.chemosphere.2021.131769
Anceschi A, Guerretta F, Magnacca G, Zanetti M, Benzi P, Trotta F, Caldera F, Nisticò R (2018) Sustainable N-containing biochars obtained at low temperatures as sorbing materials for environmental application: municipal biowaste-derived substances and nanosponges case studies. J Anal Appl Pyrolysis 134:606–613. https://doi.org/10.1016/j.jaap.2018.08.010
doi: 10.1016/j.jaap.2018.08.010
Arancibia-Miranda N, Silva-Yumi J, Escudey M (2015) Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmiumand the isoelectric point of imogolite. J Hazard Mater 299:675–684. https://doi.org/10.1016/j.jhazmat.2015.08.007
doi: 10.1016/j.jhazmat.2015.08.007
Cao D, Li H, Pan L, Li J, Wang X, Jing P, Cheng X, Wang W, Wang J, Liu Q (2016) High saturation magnetization of γ-Fe
doi: 10.1038/srep32360
Chen X, Oh WD, Zhang PH, Webster RD, Lim TT (2020) Surface construction of nitrogen-doped chitosan-derived carbon nanosheets with hierarchically porous structure for enhanced sulfacetamide degradation via peroxymonosulfate activation: maneuverable porosity and active sites. Chem Eng J 382:122908. https://doi.org/10.1016/j.cej.2019.122908
doi: 10.1016/j.cej.2019.122908
Cheng B, Pei B, Wang Z, Hu Q (2017) Advances in Chitosan-Based Superabsorbent Hydrogels. RSCAdv 7:42036–42046. https://doi.org/10.1039/C7RA07104C
doi: 10.1039/C7RA07104C
Chu TPM, Nguyen NT, Vu TL, Dao TH, Dinh LC, Nguyen HL, Hoang TH, Le TS, Pham TD (2019) Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials 12:450. https://doi.org/10.3390/ma12030450
doi: 10.3390/ma12030450
Donkadokula NY, Kola AK, Naz I, Saroj DA (2020) Review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev Environ Sci Bio 19:543–560. https://doi.org/10.1007/s11157-020-09543-z
doi: 10.1007/s11157-020-09543-z
Dotto J, Fagundes-Klen MR, Veit MT, Palacio SM, Bergamasco R (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clean Prod 208:656–665. https://doi.org/10.1016/j.jclepro.2018.10.112
doi: 10.1016/j.jclepro.2018.10.112
El-Harby NF, Ibrahim SMA, Mohamed NA (2017) Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels. Water Sci Technol 76:2719–2732. https://doi.org/10.2166/wst.2017.442
doi: 10.2166/wst.2017.442
Genovese M, Wu H, Virya A, Li J, Shen P, Lian K (2018) Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim Acta 273:392–401. https://doi.org/10.1016/j.electacta.2018.04.061
doi: 10.1016/j.electacta.2018.04.061
Huang R, Zhang L, Hu P, Wang J (2016) Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite. Int J Biol Macromol 86:496–504. https://doi.org/10.1016/j.ijbiomac.2016.01.083
doi: 10.1016/j.ijbiomac.2016.01.083
Huang W, Zhang M, Wang Y, Chen J, Zhang J (2020) Biochars prepared from rabbit manure for the adsorption of rhodamine B and Congo red: characterization, kinetics, isotherms, and thermodynamic studies. Water Sci Technol 81:436–444. https://doi.org/10.2166/wst.2020.100
doi: 10.2166/wst.2020.100
Iqbal J, Shah NS, Sayed M, Niazi NK, Imran M, Khan JA, Hussien AGS, Polychronopoulou K, Howari F (2021) Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater 403:123854. https://doi.org/10.1016/j.jhazmat.2020.123854
doi: 10.1016/j.jhazmat.2020.123854
Jeyaseelan C, Chaudhary N, Jugade R (2018) Sulphate-crosslinked chitosan as an adsorbent for the removal of Congo red dye from aqueous solution. Air Soil Water Res 11:1–8. https://doi.org/10.1177/1178622118811680
doi: 10.1177/1178622118811680
Jiang R, Fu YQ, Zhu HY, Li X, Li JB, Wang JL (2022) Magnetic Fe
doi: 10.1016/j.ijbiomac.2022.11.310
Jiang R, Zhu HY, Fu YQ, Zong EM, Jiang ST, Li JB, Zhu JQ, Zhu YY (2021) Magnetic NiFe
doi: 10.1016/j.carbpol.2020.117158
Jiang R, Zhu HY, Jiang ST, Fu YQ, Zong EM, Li JB, Zeng GM (2019) Magnetically separable Fe
doi: 10.1089/ees.2018.0278
Kunde G, Sehgal B, Ganguli A (2019) Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr(VI) from an aqueous medium. J Hazard Mater 374:140–151. https://doi.org/10.1016/j.jhazmat.2019.03.099
doi: 10.1016/j.jhazmat.2019.03.099
Lawrinenko M, Jing DP, Banik C, Laird DA (2017) Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity. Carbon 118:422–430. https://doi.org/10.1016/j.carbon.2017.03.056
doi: 10.1016/j.carbon.2017.03.056
Li P, Feng T, Song Z, Tan Y, Luo W (2020a) Chitin derived biochar for efficient capacitive deionization performance. RSC Adv 10:30077–30086. https://doi.org/10.1039/D0RA05554A
doi: 10.1039/D0RA05554A
Li L, Ren H, Liu Y, Liu X, Zhao Y, Zhou X, Kang W, Zhuang X, Cheng B (2020) Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption. Micropor Mesopor Mat 308:110544. https://doi.org/10.1016/j.micromeso.2020b.110544
doi: 10.1016/j.micromeso.2020b.110544
Liu B, Zheng H, Wang Y, Chen X, Zhao C, An Y, Tang X (2018) A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal. Sci Total Environ 640:327–336. https://doi.org/10.1016/j.scitotenv.2018.05.309
doi: 10.1016/j.scitotenv.2018.05.309
Liu X, Tian J, Li Y, Sun N, Mi S, Xie Y, Chen Z (2019) Enhanced dyes adsorption from wastewater via Fe
doi: 10.1016/j.jhazmat.2019.03.103
Ma H, Pu S, Hou Y, Zhu R, Zinchenko A, Chu W (2018) A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem Eng J 345:556–565. https://doi.org/10.1016/j.cej.2018.03.115
doi: 10.1016/j.cej.2018.03.115
Ma H, Kong A, Ji Y, He B, Song Y (2019) Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J Clean Prod 214:89–94. https://doi.org/10.1016/j.jclepro.2018.12.217
doi: 10.1016/j.jclepro.2018.12.217
Mokhtar A, Abdelkrim S, Djelad A, Sardi A, Boukoussa B, Sassi M, Bengueddach A (2020) Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohyd Polym 229:115399–115407. https://doi.org/10.1016/j.carbpol.2019.115399
doi: 10.1016/j.carbpol.2019.115399
Naseem K, Farooqi ZH, Begum R, Irfan A (2018) Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: a review. J Clean Prod 187:296–307. https://doi.org/10.1016/j.jclepro.2018.03.209
doi: 10.1016/j.jclepro.2018.03.209
Nisticò R, Guerretta F, Benzi P, Magnacca G, Mainero D, Montoneri E (2019) Thermal conversion of municipal biowaste anaerobic digestate to valuable char. Resources 8:24–30. https://doi.org/10.3390/resources8010024
doi: 10.3390/resources8010024
Nisticò R, Guerretta RF, Benzi P, Magnacca G (2020) Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices. Int J Biol Macromol 164:1825–1831. https://doi.org/10.1016/j.ijbiomac.2020.08.017
doi: 10.1016/j.ijbiomac.2020.08.017
Olusegun SJ, Mohallem NDS (2020) Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe
doi: 10.1016/j.envpol.2020.114019
Omidi S, Kakanejadifard A (2018) Eco-friendly synthesis of graphene–chitosan composite hydrogel as efficient adsorbent for Congo red. RSC Adv 8:12179–12189. https://doi.org/10.1039/C8RA00510A
doi: 10.1039/C8RA00510A
Palansooriya KN, Yong SO, Awad YM, Lee SS, Sung JKA, Koutsospyros DH (2019) Impacts of biochar application on upland agriculture: a review. J Environ Manage 234:52–64. https://doi.org/10.1016/j.jenvman.2018.12.085
doi: 10.1016/j.jenvman.2018.12.085
Qiao Y, Kong F, Zhang C, Li R, Kong A, Shan Y (2020) Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery. Electrochim Acta 339:135923. https://doi.org/10.1016/j.electacta.2020.135923
doi: 10.1016/j.electacta.2020.135923
Rahman MM, Rimu SH (2020) Recent development in cellulose nanocrystal-based hydrogel for decolouration of methylene blue from aqueous solution: a review. Int J Environ Anal Chem 28:1–18. https://doi.org/10.1080/03067319.2020.1817424
doi: 10.1080/03067319.2020.1817424
Saheed IO, Oh WD, Suah FB (2021) Chitosan modifications for adsorption of pollutants – a review. J Hazard Mater 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889
doi: 10.1016/j.jhazmat.2020.124889
Talha M, Goswami M, Giri BS, Sharma A, Rai BN, Singh RS (2018) Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresour Technol 252:37–43. https://doi.org/10.1016/j.biortech.2017.12.081
doi: 10.1016/j.biortech.2017.12.081
Thakre D, Jagtap S, Sakhare N, Labhsetwar N, Meshram S, Rayalu S (2010) Chitosan based mesoporous Ti–Al binary metal oxide supported beads for defluoridation of water. Chem Eng J 158:315–324. https://doi.org/10.1016/j.cej.2010.01.008
doi: 10.1016/j.cej.2010.01.008
Tu H, Yu Y, Chen J, Shi X, Zhou J, Deng H, Du Y (2017) Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polym Chem 8:2913–2921. https://doi.org/10.1039/C7PY00223H
doi: 10.1039/C7PY00223H
Wang W, Yue Q, Gao B, Li R (2016) Floc proprieties and ultrafiltration characteristics by chitosan compound aluminum species coagulant under different pH conditions. J Taiwan Inst Chem E 68:224–231. https://doi.org/10.1016/j.jtice.2016.08.041
doi: 10.1016/j.jtice.2016.08.041
Wang B, Zhu Y, Bai Z, Luque R, Xuan J (2017) Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment. Chem Eng J 325:350–359. https://doi.org/10.1016/j.cej.2017.05.065
doi: 10.1016/j.cej.2017.05.065
Webber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238. https://doi.org/10.1002/aic.690200204
doi: 10.1002/aic.690200204
Wu YG, Zhang Y, Qian J, Xin X, Hu S, Zhang S, Wei JG (2017) An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-crosslinked chitosan beads. Roy Soc Open Sci 4:170905. https://doi.org/10.1098/rsos.170905
doi: 10.1098/rsos.170905
Yi Y, Huang Z, Lu B, Xian J, Tsang EP, Cheng W, Fang J, Fang Z (2019) Magnetic biochar for environmental remediation: a review. Bioresour Technol 298:122468. https://doi.org/10.1016/j.biortech.2019.122468
doi: 10.1016/j.biortech.2019.122468
Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965. https://doi.org/10.1039/C2TA00315E
doi: 10.1039/C2TA00315E
Zhang LF, Xia W, Liu X, Zhang W (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J Mater Chem 3:331–340. https://doi.org/10.1039/C4TA05194G
doi: 10.1039/C4TA05194G
Zhang C, Zhang Z, Zhang L, Li Q, Li C, Chen G, Zhang S, Liu Q, Hu X (2020) Evolution of the functionalities and structures of biochars in pyrolysis of poplar in a wide temperature range. Bioresour Technol 304:123002. https://doi.org/10.1016/j.biortech.2020.123002
doi: 10.1016/j.biortech.2020.123002
Zhao S, Wen Y, Du C, Tang T, Kang D (2020) Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes. Chem Eng J 402:126180. https://doi.org/10.1016/j.cej.2020a.126180
doi: 10.1016/j.cej.2020a.126180
Zhao Y, Guo L, Shen W, An Q, Xiao Z, Wang H, Cai W, Zhai S, Li Z (2020) Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal. Carbohyd Polym 230:115639. https://doi.org/10.1016/j.carbpol.2019.115639
doi: 10.1016/j.carbpol.2019.115639
Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly (vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30. https://doi.org/10.1016/j.biortech.2011.11.057
doi: 10.1016/j.biortech.2011.11.057
Zhu HY, Jiang R, Li JB, Fu YQ, Jiang ST, Yao J (2017) Magnetically recyclable Fe
doi: 10.1016/j.seppur.2016.12.051
Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable gamma-Fe
doi: 10.1016/j.jhazmat.2010.02.087