Metabolic blood flow regulation in a hybrid model of the human retinal microcirculation.
Blood flow
Flow regulation
Glaucoma
Mathematical model
Oxygenation
Retina
Journal
Mathematical biosciences
ISSN: 1879-3134
Titre abrégé: Math Biosci
Pays: United States
ID NLM: 0103146
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
25
08
2022
revised:
17
01
2023
accepted:
17
01
2023
pmc-release:
01
03
2024
pubmed:
27
1
2023
medline:
8
3
2023
entrez:
26
1
2023
Statut:
ppublish
Résumé
The retinal vascular network supplies perfusion to vital visual structures, including retinal ganglion cells responsible for vision. Impairments in retinal blood flow and oxygenation are involved in the progression of many ocular diseases, including glaucoma. In this study, an established theoretical hybrid model of a retinal microvascular network is extended to include the effects of local blood flow regulation on oxygenation. A heterogeneous representation of the arterioles based on confocal microscopy images is combined with a compartmental description of the downstream capillaries and venules. A Green's function method is used to simulate oxygen transport in the arterioles, and a Krogh cylinder model is applied to the capillary and venular compartments. Acute blood flow regulation is simulated in response to changes in pressure, shear stress, and metabolism. Model results predict that both increased intraocular pressure and impairment of blood flow regulation can cause decreased tissue oxygenation, indicating that both mechanisms represent factors that could lead to impaired oxygenation characteristic of ocular disease. Results also indicate that the metabolic response mechanism reduces the fraction of poorly oxygenated tissue but that the pressure- and shear stress-dependent response mechanisms may hinder the vascular response to changes in oxygenation. Importantly, the heterogeneity of the vascular network demonstrates that traditionally reported average values of tissue oxygen levels hide significant localized defects in tissue oxygenation that may be involved in disease processes, including glaucoma. Ultimately, the model framework presented in this study will facilitate future comparisons to sectorial-specific clinical data to better assess the role of impaired blood flow regulation in ocular disease.
Identifiants
pubmed: 36702235
pii: S0025-5564(23)00010-X
doi: 10.1016/j.mbs.2023.108969
pmc: PMC10015448
mid: NIHMS1867746
pii:
doi:
Substances chimiques
Oxygen
S88TT14065
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
108969Subventions
Organisme : NEI NIH HHS
ID : R01 EY030851
Pays : United States
Informations de copyright
Copyright © 2023 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Invest Ophthalmol Vis Sci. 2015 Feb 10;56(3):1569-74
pubmed: 25670487
Invest Ophthalmol Vis Sci. 1985 Aug;26(8):1124-32
pubmed: 4019103
Invest Ophthalmol Vis Sci. 2012 Feb 13;53(2):698-703
pubmed: 22247463
Curr Eye Res. 2009 Nov;34(11):945-56
pubmed: 19958111
Crit Rev Biomed Eng. 1989;17(3):257-321
pubmed: 2673661
Br J Ophthalmol. 2004 Mar;88(3):406-11
pubmed: 14977778
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1562-71
pubmed: 18689501
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1572-9
pubmed: 18723769
Invest Ophthalmol Vis Sci. 2013 Jan 21;54(1):647-51
pubmed: 23299486
Diabetes Care. 2010 Sep;33(9):2038-42
pubmed: 20585003
Am J Physiol Heart Circ Physiol. 2012 Jul;303(1):H47-56
pubmed: 22523254
Br J Ophthalmol. 1996 Apr;80(4):327-31
pubmed: 8703884
Sci Rep. 2019 Nov 8;9(1):16340
pubmed: 31705046
J Physiol. 1919 May 20;52(6):409-15
pubmed: 16993405
Appl Opt. 1988 Mar 15;27(6):1113-25
pubmed: 20531526
Invest Ophthalmol Vis Sci. 2012 Aug 13;53(9):5433-42
pubmed: 22786895
Biomed Opt Express. 2011 Jun 1;2(6):1539-52
pubmed: 21698017
Ann Biomed Eng. 2004 Nov;32(11):1519-29
pubmed: 15636112
Math Biosci. 2018 Nov;305:1-9
pubmed: 30149022
Invest Ophthalmol Vis Sci. 2011 Feb 11;52(2):840-5
pubmed: 21051715
Math Biosci. 2020 Nov;329:108476
pubmed: 32920096
Invest Ophthalmol Vis Sci. 2013 Dec 09;54(13):7998-8003
pubmed: 24222303
Microvasc Res. 1988 May;35(3):341-62
pubmed: 3393095
Math Biosci. 1989 Sep;96(1):61-78
pubmed: 2520192
Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H1945-52
pubmed: 22408023
Br J Ophthalmol. 2009 May;93(5):634-7
pubmed: 19168468
Invest Ophthalmol Vis Sci. 2013 Aug 19;54(8):5584-93
pubmed: 23847315
JAMA Ophthalmol. 2017 Mar 01;135(3):244-251
pubmed: 28196198
Transl Vis Sci Technol. 2022 Feb 01;11(2):9
pubmed: 35119472
Am J Physiol. 1993 Jun;264(6 Pt 2):H1825-30
pubmed: 8322911
Sci Rep. 2015 Oct 27;5:15763
pubmed: 26503332
Physiol Rep. 2013 Aug;1(3):e00050
pubmed: 24040516
Invest Ophthalmol Vis Sci. 2014 May 29;55(7):4105-18
pubmed: 24876284
Biomed Opt Express. 2014 Jan 28;5(2):630-42
pubmed: 24575355
Ophthalmic Res. 2007;39(2):76-80
pubmed: 17284932
Photonics. 2021 Oct;8(10):
pubmed: 36052288
Biomech Model Mechanobiol. 2016 Jun;15(3):525-42
pubmed: 26232093
Microcirculation. 2021 Jul;28(5):e12690
pubmed: 33650127
Prog Retin Eye Res. 2020 Jan 24;:100841
pubmed: 31987983