In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
06 2023
Historique:
received: 04 03 2021
accepted: 07 10 2022
medline: 15 6 2023
pubmed: 27 1 2023
entrez: 26 1 2023
Statut: ppublish

Résumé

Human intestinal organoids (HIOs) derived from pluripotent stem cells provide a valuable model for investigating human intestinal organogenesis and physiology, but they lack the immune components required to fully recapitulate the complexity of human intestinal biology and diseases. To address this issue and to begin to decipher human intestinal-immune crosstalk during development, we generated HIOs containing immune cells by transplanting HIOs under the kidney capsule of mice with a humanized immune system. We found that human immune cells temporally migrate to the mucosa and form cellular aggregates that resemble human intestinal lymphoid follicles. Moreover, after microbial exposure, epithelial microfold cells are increased in number, leading to immune cell activation determined by the secretion of IgA antibodies in the HIO lumen. This in vivo HIO system with human immune cells provides a framework for future studies on infection- or allergen-driven intestinal diseases.

Identifiants

pubmed: 36702898
doi: 10.1038/s41587-022-01558-x
pii: 10.1038/s41587-022-01558-x
pmc: PMC10264243
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

824-831

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM145304
Pays : United States
Organisme : NIDDK NIH HHS
ID : U24 DK085532
Pays : United States
Organisme : NIH HHS
ID : S10 OD025045
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK103141
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK103117
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK085532
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).
doi: 10.1038/nri3738 pubmed: 25234148
Rios, D. et al. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 9, 907–916 (2016).
doi: 10.1038/mi.2015.121 pubmed: 26601902
Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4
doi: 10.1016/j.immuni.2018.12.010 pubmed: 30770246
Andrews, C., McLean, M. H. & Durum, S. K. Cytokine tuning of intestinal epithelial function. Front. Immunol. 9, 1270 (2018).
doi: 10.3389/fimmu.2018.01270 pubmed: 29922293 pmcid: 5996247
Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).
doi: 10.1038/nri3661 pubmed: 24751956
Gibbons, D. L. & Spencer, J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4, 148–157 (2011).
doi: 10.1038/mi.2010.85 pubmed: 21228770
Noel, G. et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 7, 45270 (2017).
doi: 10.1038/srep45270 pubmed: 28345602 pmcid: 5366908
Staab, J. F., Lemme-Dumit, J. M., Latanich, R., Pasetti, M. F. & Zachos, N. C. Co-culture system of human enteroids/colonoids with innate immune cells. Curr. Protoc. Immunol. 131, e113 (2020).
pubmed: 33166041 pmcid: 8363138
Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).
doi: 10.1038/s41577-019-0248-y pubmed: 31853049
Sinagoga, K. L. & Wells, J. M. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J. 34, 1149–1163 (2015).
doi: 10.15252/embj.201490686 pubmed: 25792515 pmcid: 4426477
Singh, A., Poling, H. M., Spence, J. R., Wells, J. M. & Helmrath, M. A. Gastrointestinal organoids: a next-generation tool for modeling human development. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G375–G381 (2020).
doi: 10.1152/ajpgi.00199.2020 pubmed: 32658619 pmcid: 7509262
Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).
doi: 10.1038/nm.3737 pubmed: 25326803 pmcid: 4408376
Poling, H. M. et al. Mechanically induced development and maturation of human intestinal organoids in vivo. Nat. Biomed. Eng. 2, 429–442 (2018).
doi: 10.1038/s41551-018-0243-9 pubmed: 30151330 pmcid: 6108544
Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).
doi: 10.1038/nm.4233 pubmed: 27869805
Koboziev, I. et al. Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases. Inflamm. Bowel Dis. 21, 1652–1673 (2015).
doi: 10.1097/MIB.0000000000000446 pubmed: 26035036
Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).
doi: 10.1038/s41590-019-0416-z pubmed: 31160798 pmcid: 7265413
Wunderlich, M. et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785–1788 (2010).
doi: 10.1038/leu.2010.158 pubmed: 20686503 pmcid: 5439963
Wunderlich, M. et al. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS ONE 13, e0209034 (2018).
doi: 10.1371/journal.pone.0209034 pubmed: 30540841 pmcid: 6291127
Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).
doi: 10.1016/1074-7613(95)90047-0 pubmed: 7697543
Nochi, T., Denton, P. W., Wahl, A. & Garcia, J. V. Cryptopatches are essential for the development of human GALT. Cell Rep. 3, 1874–1884 (2013).
doi: 10.1016/j.celrep.2013.05.037 pubmed: 23791525 pmcid: 3725137
Braegger, C. P., Spencer, J. & MacDonald, T. T. Ontogenetic aspects of the intestinal immune system in man. Int. J. Clin. Lab. Res. 22, 1–4 (1992).
doi: 10.1007/BF02591385 pubmed: 1633313
Spencer, J., MacDonald, T. T., Finn, T. & Isaacson, P. G. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin. Exp. Immunol. 64, 536–543 (1986).
pubmed: 3491695 pmcid: 1542427
Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).
doi: 10.1038/mi.2013.30 pubmed: 23695511 pmcid: 3686595
Savidge, T. C., Smith, M. W., James, P. S. & Aldred, P. Salmonella-induced M-cell formation in germ-free mouse Peyer’s patch tissue. Am. J. Pathol. 139, 177–184 (1991).
pubmed: 1853932 pmcid: 1886127
Chassaing, B., Kumar, M., Baker, M. T., Singh, V. & Vijay-Kumar, M. Mammalian gut immunity. Biomed. J. 37, 246–258 (2014).
doi: 10.4103/2319-4170.130922 pubmed: 25163502
Li, N. et al. Memory CD4
doi: 10.1038/s41590-018-0294-9 pubmed: 30664737 pmcid: 6420108
Li, N. et al. Early-life compartmentalization of immune cells in human fetal tissues revealed by high-dimensional mass cytometry. Front. Immunol. 10, 1932 (2019).
doi: 10.3389/fimmu.2019.01932 pubmed: 31474997 pmcid: 6703141
Li, N. et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J. Exp. Med. 215, 1383–1396 (2018).
doi: 10.1084/jem.20171934 pubmed: 29511064 pmcid: 5940268
Stras, S. F. et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev. Cell https://doi.org/10.1016/j.devcel.2019.09.008 (2019).
Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e23 (2021).
doi: 10.1016/j.cell.2020.12.016 pubmed: 33406409 pmcid: 7864098
Rojas, R. & Apodaca, G. Immunoglobulin transport across polarized epithelial cells. Nat. Rev. Mol. Cell Biol. 3, 944–955 (2002).
doi: 10.1038/nrm972 pubmed: 12461560
McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928 (2011).
doi: 10.1038/nprot.2011.410 pubmed: 22082986 pmcid: 3896236
Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).
doi: 10.1038/nature09691 pubmed: 21151107
D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).
doi: 10.1038/nbt1163 pubmed: 16258519
Wunderlich, M. et al. OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood 123, e134–e144 (2014).
doi: 10.1182/blood-2014-02-556340 pubmed: 24778156 pmcid: 4055932
Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).
doi: 10.1038/nprot.2007.315 pubmed: 17947970
Lee, J. B. et al. IL-25 and CD4
doi: 10.1016/j.jaci.2015.09.019 pubmed: 26560039
Mahe, M. M., Sundaram, N., Watson, C. L., Shroyer, N. F. & Helmrath, M. A. Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J. Vis. Exp. https://doi.org/10.3791/52483 (2015).
Ranganathan, S. et al. Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect. Immun. https://doi.org/10.1128/IAI.00740-18 (2019).
Spence, J. R. et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev. Cell 17, 62–74 (2009).
doi: 10.1016/j.devcel.2009.05.012 pubmed: 19619492 pmcid: 2734336

Auteurs

Carine Bouffi (C)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Kathryn A Wikenheiser-Brokamp (KA)

Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.

Praneet Chaturvedi (P)

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Nambirajan Sundaram (N)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Gillian R Goddard (GR)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Mark Wunderlich (M)

Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Nicole E Brown (NE)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Janet F Staab (JF)

Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Rachel Latanich (R)

Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Nicholas C Zachos (NC)

Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Emily M Holloway (EM)

Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.

Maxime M Mahe (MM)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.

Holly M Poling (HM)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Simon Vales (S)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Garrett W Fisher (GW)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Jason R Spence (JR)

Division of Gastroenterology, Department of Internal Medicine, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.

James C Mulloy (JC)

Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Aaron M Zorn (AM)

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

James M Wells (JM)

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Michael A Helmrath (MA)

Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. michael.helmrath@cchmc.org.
Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. michael.helmrath@cchmc.org.
Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA. michael.helmrath@cchmc.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH