A New Class of Proton Conductors with Dramatically Enhanced Stability and High Conductivity for Reversible Solid Oxide Cells.
donor doping
high ionic conductivity
proton-conducting electrolytes
reversible solid oxide cells
water tolerance
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
revised:
12
01
2023
received:
22
12
2022
medline:
28
1
2023
pubmed:
28
1
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
Reversible solid oxide cells based on proton conductors (P-ReSOCs) have potential to be the most efficient and low-cost option for large-scale energy storage and power generation, holding promise as an enabler for the implementation of intermittent renewable energy technologies and the widespread utilization of hydrogen. Here, the rational design of a new class of hexavalent Mo/W-doped proton-conducting electrolytes with excellent durability while maintaining high conductivity is reported. Specifically, BaMo(W)
Identifiants
pubmed: 36703520
doi: 10.1002/smll.202208064
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2208064Subventions
Organisme : U.S. Department of Energy, Office of Fossil Energy, Small-Scale Solid Oxide Fuel Cell Systems and Hybrid Electrolyzer Technology Development Program
ID : DE-FE0032115
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
A. Evans, V. Strezov, T. J. Evans, Renewable Sustainable Energy Rev. 2012, 16, 4141.
J. Kim, S. Sengodan, S. Kim, O. Kwon, Y. Bu, G. Kim, Renewable Sustainable Energy Rev. 2019, 109, 606.
a) L. B. Lei, J. H. Zhang, Z. H. Yuan, J. P. Liu, M. Ni, F. L. Chen, Adv. Funct. Mater. 2019, 16, 29;
b) W. Wang, D. Medvedev, Z. P. Shao, Adv. Funct. Mater. 2018, 28, 1802592.
Y. Zhang, R. Knibbe, J. Sunarso, Y. J. Zhong, W. Zhou, Z. P. Shao, Z. H. Zhu, Adv. Mater. 2017, 29, 1700132.
a) K. Bae, D. H. Kim, H. J. Choi, J. W. Son, J. H. Shim, Adv. Energy Mater. 2018, 8, 1801315;
b) F. He, Q. N. Gao, Z. Q. Liu, M. T. Yang, R. Ran, G. M. Yang, W. Wang, W. Zhou, Z. P. Shao, Adv. Energy Mater. 2021, 11, 2003916.
a) A. V. Mohammadi, Z. Cheng, J. Electrochem. Soc. 2015, 162, F803;
b) R. Murphy, Y. C. Zhou, L. Zhang, L. Soule, W. L. Zhang, Y. Chen, M. L. Liu, Adv. Funct. Mater. 2020, 30, 2002265;
c) W. Y. Li, B. Guan, L. Ma, H. C. Tian, X. B. Liu, ACS Appl. Mater. Interfaces 2019, 11, 18323;
d) N. Yan, Y. M. Zeng, B. Shalchi, W. Wang, T. Gao, G. Rothenberg, J. L. Luo, J. Electrochem. Soc. 2015, 162, F1408.
H. C. Tian, Z. Y. Luo, Y. F. Song, Y. C. Zhou, M. Y. Gong, W. Y. Li, Z. P. Shao, M. L. Liu, X. B. Liu, Int. Mater. Rev. 2022, 1.
Z. Y. Luo, Y. C. Zhou, X. Y. Hu, N. Kane, W. L. Zhang, T. T. Li, Y. Ding, Y. Liu, M. L. Liu, ACS Energy Lett. 2022, 7, 2970.
X. Y. Hu, Y. Xie, Y. H. Wan, Y. Yang, X. J. Wu, C. R. Xia, Appl. Catal., B 2021, 286, 119901.
a) S. W. Wang, Y. Chen, S. M. Fang, L. L. Zhang, M. Tang, K. An, K. S. Brinkman, F. L. Chen, Chem. Mater. 2014, 26, 2021;
b) P. Ngabonziza, R. Merkle, Y. Wang, P. A. Aken, T. S. Bjorheim, J. Maier, J. Mannhart, Adv. Energy Mater. 2021, 11, 2003267;
c) M. S. Islam, S. Wang, A. M. Nolan, Y. F. Mo, Chem. Mater. 2021, 33, 8278.
Z. Y. Luo, Y. C. Zhou, X. Y. Hu, N. Kane, T. T. Li, W. L. Zhang, Z. J. Liu, Y. Ding, Y. Liu, M. L. Liu, Environ. Sci. 2022, 15, 2992.
L. Yang, S. Z. Wang, K. Blinn, M. F. Liu, Z. Liu, Z. Cheng, M. L. Liu, Science 2009, 326, 126.
a) J. Hyodo, K. Kitabayashi, K. Hoshino, Y. Okuyama, Y. Yamazaki, Adv. Energy Mater. 2020, 10, 2000213;
b) S. Kasamatsu, O. Sugino, T. Ogawa, A. Kuwabara, J. Mater. Chem. A 2020, 8, 12674.
a) H. S. Kim, A. Jang, S. Y. Choi, W. Jung, S. Y. Chung, Angew. Chem., Int. Ed. 2016, 55, 13499;
b) Y. H. Jing, H. Matsumoto, N. R. Aluru, Chem. Mater. 2018, 30, 138.
Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic, J. C. Lucio-Vega, C. P. Grey, S. M. Haile, Nat. Mater. 2013, 12, 647.
Y. F. Song, J. M. Chen, M. T. Yang, M. G. Xu, D. L. Liu, M. Z. Liang, Y. H. Wang, R. Ran, W. Wang, F. Ciucci, Z. P. Shao, Small 2022, 18, 2200450.
D. L. Han, X. Liu, T. S. Bjorheim, T. Uda, Adv. Energy Mater. 2021, 11, 2003149.
C. C. Duan, J. K. Huang, N. Sullivan, R. O'Hayre, Appl. Phys. Rev. 2020, 7, 011314.
Y. Chen, S. Yoo, Y. Choi, J. H. Kim, Y. Ding, K. Pei, R. Murphy, Y. X. Zhang, B. T. Zhao, W. L. Zhang, H. J. Chen, Y. Chen, W. Yuan, C. H. Yang, M. L. Liu, Environ Sci 2018, 11, 2458.
T. Kuroha, Y. Niina, M. Shudo, G. Sakai, N. Matsunaga, T. Goto, K. Yamauchi, Y. Mikami, Y. Okuyama, J. Power Sources 2021, 506, 230134.
Y. C. Zhou, E. Z. Liu, Y. Chen, Y. C. Liu, L. Zhang, W. L. Zhang, Z. Y. Luo, N. Kane, B. Zhao, L. Soule, Y. H. Niu, Y. Ding, H. P. Ding, D. Ding, M. L. Liu, ACS Energy Lett. 2021, 6, 1511.
a) S. Choi, T. C. Davenport, S. M. Haile, Environ. Sci. 2019, 12, 206;
b) J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T. H. Lim, G. Kim, Nano Energy 2018, 44, 121;
c) H. P. Ding, W. Wu, C. Jiang, Y. Ding, W. J. Bian, B. X. Hu, P. Singh, C. J. Orme, L. C. Wang, Y. Y. Zhang, D. Ding, Nat. Commun. 2020, 11, 1907;
d) C. C. Duan, R. Kee, H. Y. Zhu, N. Sullivan, L. Z. Zhu, L. Z. Bian, D. Jennings, R. O'Hayre, Nat. Energy 2019, 4, 230;
e) K. Xu, H. Zhang, Y. S. Xu, F. He, Y. C. Zhou, Y. X. Pan, J. Y. Ma, B. T. Zhao, W. Yuan, Y. Chen, M. L. Liu, Adv. Funct. Mater. 2022, 32, 2110998;
f) W. Tang, H. P. Ding, W. J. Bian, W. Wu, W. Y. Li, X. B. Liu, J. Y. Gomez, C. Y. R. Vera, M. Zhou, D. Ding, J. Mater. Chem. A 2020, 8, 14600;
g) F. He, S. Liu, T. Wu, M. T. Yang, W. H. Li, G. M. Yang, F. Zhu, H. Zhang, K. Pei, Y. Chen, W. Zhou, Z. P. Shao, Adv. Funct. Mater. 2022, 32, 2206756.