A novel membrane stirrer system enables foam-free biosurfactant production.
Pseudomonas putida
antifoam
bubble-free
membrane
membrane aeration
rhamnolipid
stirrer
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
revised:
29
12
2022
received:
04
08
2022
accepted:
23
01
2023
medline:
14
4
2023
pubmed:
28
1
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
Bioreactors are the operative backbone, for example, for the production of biopharmaceuticals, biomaterials in tissue engineering, and sustainable substitutes for chemicals. Still, the Achilles' heel of bioreactors nowadays is the aeration which is based on intense stirring and gas sparging, yielding inherent drawbacks such as shear stress, foaming, and sterility concerns. We present the synergistic combination of simulations and experiments toward a membrane stirrer for the efficient bubble-free aeration of bioreactors. A digital twin of the bioreactor with an integrated membrane-module stirrer (MemStir) was developed with computational fluid dynamics (CFD) studies addressing the determination of fluid mixing, shear rates, and local oxygen concentration. Usability of the MemStir is shown in a foam-free recombinant production process of biosurfactants (rhamnolipids) from glucose with different strains of Pseudomonas putida KT2440 in a 3-L vessel and benchmarked against a regular aerated process. The MemStir delivered a maximal oxygen transfer rate (OTR
Substances chimiques
Glucose
IY9XDZ35W2
Oxygen
S88TT14065
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1269-1287Informations de copyright
© 2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
Références
Abdel-Mawgoud, A. M., Lépine, F., & Déziel, E. (2010). Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 86(5), 1323-1336.
Allen, S. M., Fujii, M., Stannett, V., Hopfenberg, H. B., & Williams, J. L. (1977). The barrier properties of polyacrylonitrile. Journal of Membrane Science, 2, 153-163. https://doi.org/10.1016/S0376-7388(00)83241-X
Anic, I., Apolonia, I., Franco, P., & Wichmann, R. (2018). Production of rhamnolipids by integrated foam adsorption in a bioreactor system. AMB Express, 8(1), 122. https://doi.org/10.1186/s13568-018-0651-y
Bator, I., Karmainski, T., Tiso, T., & Blank, L. M. (2020). Killing two birds with one stone - strain engineering facilitates the development of a unique rhamnolipid production process. Frontiers in Bioengineering and Biotechnology, 8, 899.
Behrens, B., Baune, M., Jungkeit, J., Tiso, T., Blank, L. M., & Hayen, H. (2016). High performance liquid chromatography- charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. Journal of Chromatography A, 1455, 125-132. https://doi.org/10.1016/j.chroma.2016.05.079
Beuker, J., Barth, T., Steier, A., Wittgens, A., Rosenau, F., Henkel, M., & Hausmann, R. (2016). High titer heterologous rhamnolipid production. AMB Express, 6(1), 124.
Blank, L. M., Ebert, B. E., Buehler, K., & Bühler, B. (2010). Redox biocatalysis and metabolism: Molecular mechanisms and metabolic network analysis. Antioxidants & Redox Signaling, 13(3), 349-394. https://doi.org/10.1089/ars.2009.2931
Blank, L. M., Ionidis, G., Ebert, B. E., Bühler, B., & Schmid, A. (2008). Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS Journal, 275(20), 5173-5190.
Blesken, C. C., Bator, I., Eberlein, C., Heipieper, H. J., Tiso, T., & Blank, L. M. (2020). Genetic cell-surface modification for optimized foam fractionation. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.572892
Blesken, C. C., Strümpfler, T., Tiso, T., & Blank, L. M. (2020). Uncoupling foam fractionation and foam adsorption for enhanced biosurfactant synthesis and recovery. Microorganisms, 8(12), 2029. https://doi.org/10.3390/microorganisms8122029
Bongartz, P., Bator, I., Baitalow, K., Keller, R., Tiso, T., Blank, L. M., & Wessling, M. (2021). A scalable bubble-free membrane aerator for biosurfactant production. Biotechnology and Bioengineering, 118(9), 3545-3558. https://doi.org/10.1002/bit.27822
Brod, H., Kauling, J., Frahm, B., & Rose, R. (2009). Method and apparatus for the gassing and degassing of liquids, particularly in biotechnology, and specifically of cell cultures (US Patent App. 12/280,565).
Brown, A. K., Isbell, C., Gallagher, S., Dodd, P. W., & Varley, J. (2001). An improved method for controlling foams produced within bioreactors. Food and Bioproducts Processing, 79(2), 114-121. https://doi.org/10.1205/096030801750286276
Carstensen, F., Apel, A., & Wessling, M. (2012). In situ product recovery: Submerged membranes vs. external loop mem branes. Journal of Membrane Science, 394-395, 1-36.
Catapano, G. (2004). Turbulent flow technique for the estimation of oxygen diffusive permeability of membranes for the oxygenation of blood and other cell suspensions. Journal of Membrane Science, 230(1-2), 131-139.
Chang, H. N., & Furusaki, S. (1991). Membrane bioreactors: Present and prospects. Bioreactor Systems and Effects, 27-64.
Charcosset, C. (2012). Membrane processes in biotechnology and pharmaceutics. Elsevier. https://doi.org/10.1016/C2011-0-04261-8
Chisti, Y. (2000). Animal-cell damage in sparged bioreactors. Trends in Biotechnology, 18(10), 420-432.
Cote, P., Bersillon, J.-L., Huyard, A., & Faup, G. (1988). Bubble-free aeration using membranes: Process analysis. Journal (Water Pollution Control Federation), 1986-1992.
Coutte, F., Lecouturier, D., Ait Yahia, S., Leclère, V., Béchet, M., Jacques, P., & Dhulster, P. (2010). Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology, 87(2), 499-507. https://doi.org/10.1007/s00253-010-2504-8
Delvigne, F., & Lecomte, J.-P. (2010). Foam formation and control in bioreactors, Encyclopedia of industrial biotechnology (pp. 1-13). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470054581.eib326
Demling, P., Ankenbauer, A., Klein, B., Noack, S., Tiso, T., Takors, R., & Blank, L. M. (2021). Pseudomonas putida KT2440 endures temporary oxygen limitations. Biotechnology and Bioengineering, 118(12), 4735-4750.
Demling, P., von Campenhausen, M., Grütering, C., Tiso, T., Jupke, A., & Blank, L. M. (2020). Selection of a recyclable in situ liquid-liquid extraction solvent for foam-free synthesis of rhamnolipids in a two-phase fermentation. Green Chemistry, 22(23), 8495-8510. https://doi.org/10.1039/D0GC02885A
Djeljadini, S., Bongartz, P., Alders, M., Hartmann, N., Oing, A., Cornelissen, C., Hesselmann, F., Arens, J., Steinseifer, U., Linkhorst, J., & Wessling, M. (2021). Porous PVDF monoliths with templated geometry. Advanced Materials Technologies, 6(11), 2100325. https://doi.org/10.1002/admt.202100325
Drioli, E., Curcio, E., & Di Profio, G. (2005). State of the art and recent progresses in membrane contactors. Chemical Engineering Research and Design, 83(3), 223-233. https://doi.org/10.1205/cherd.04203
Ducommun, P., Ruffieux, P.-A., Furter, M.-P., Marison, I., & von Stockar, U. (2000). A new method for on-line measure- ment of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. Journal of Biotechnology, 78(2), 139-147.
Frahm, B., Brod, H., & Langer, U. (2009). Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration. Cytotechnology, 59(1), 17-30.
Frahm, B., Kirchner, S., Kauling, J., Brod, H., Langer, U., & Bödeker, B. (2007). Dynamische membranbegasung im bioreaktor zur intensivierung der sauerstoffversorgung empfindlicher zelllinien. Chemie Ingenieur Technik, 79(7), 1052-1058.
GMI. (2020). Bioreactors market size by product type (single use, reusable), by cell (mammalian cells, bacterial cells, yeast cells), by molecule (monoclonal antibodies, vaccines, recombinant proteins, stem cells, gene therapy), by usage (developmental, pre-clinical & clinical, commercial production), by end-use (R&D organizations, biopharma man-ufacturers, contract manufacturing organizations [cmos]), industry analysis, report, regional outlook, application potential, price trends, competitive market share & forecast 2021-2027. https://www.marketresearch.com/One-Off-Global-Market-Insights-v4130/Bioreactors-Size-Product-Type-Single-14273838
Guarino, R. D., Dike, L. E., Haq, T. A., Rowley, J. A., Pitner, J. B., & Timmins, M. R. (2004). Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnology and Bioengineering, 86(7), 775-787. https://doi.org/10.1002/bit.20072
Handa-Corrigan, A., Emery, A. N., & Spier, R. E. (1989). Effect of gas-liquid interfaces on the growth of suspended mammalian cells: Mechanisms of cell damage by bubbles. Enzyme and Microbial Technology, 11(4), 230-235.
Hartmans, S., Bont, J. A. M., & Harder, W. (1989). Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiology Letters, 63(3), 235-264. https://doi.org/10.1016/0378-1097(89)90133-X
Heidemann, R., Riese, U., Lu¨tkemeyer, D., Bu¨ntemeyer, H., & Lehmann, J. (1994). The super-spinner: A low cost animal cell culture bioreactor for the CO2 incubator. Cytotechnology, 14(1), 1-9.
Henzler, H.-J. (2000). Particle stress in bioreactors. Influence of stress on cell growth and product formation, 35-82. In Springer. https://doi.org/10.1007/3-540-47865-5.
Jiang, J., Zu, Y., Li, X., Meng, Q., & Long, X. (2020). Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Bioresource Technology, 298, 122394.
Junker, B. (2007). Foam and its mitigation in fermentation systems. Biotechnology Progress, 23(4), 767-784.
Kampers, L. F. C., Volkers, R. J. M., & Martins dos Santos, V. A. P. (2019). Pseudomonas putida KT2440 is HV 1 certified, not GRAS. Microbial Biotechnology, 12(5), 845-848.
Käß, F., Prasad, A., Tillack, J., Moch, M., Giese, H., Büchs, J., Wiechert, W., & Oldiges, M. (2014). Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess and Biosystems Engineering, 37(12), 2567-2577.
Knazek, R. A., Gullino, P. M., Kohler, P. O., & Dedrick, R. L. (1972). Cell culture on artificial capillaries: An approach to tissue growth in vitro. Science, 178(4056), 65-67.
de Kronemberger, F. A., Santa Anna, L. M. M., Fernandes, A. C. L. B., de Menezes, R. R., Borges, C. P., & Freire, D. M. G. (2007). Oxygen-controlled biosurfactant production in a bench scale bioreactor, Biotechnology for fuels and chemicals (pp. 401-413). In Springer. https://doi.org/10.1007/s12010-007-8057-3
Makagiansar, H. Y., Ayazi Shamlou, P., Thomas, C. R., & Lilly, M. D. (1993). The influence of mechanical forces on the morphol- ogy and penicillin production of Penicillium chrysogenum. Bioprocess Engineering, 9(2), 83-90. https://doi.org/10.1007/BF00369035
Mandenius, C.-F. (2016). Bioreactors: Design, operation and novel applications. John Wiley & Sons.
Martínez- García, E., Nikel, P. I., Chavarría, M., & de Lorenzo, V. (2014). The metabolic cost of flagellar motion in Pseu- domonas putida. Environmental Microbiology, 16(1), KT2440291-303.
Menniti, A., Kang, S., Elimelech, M., & Morgenroth, E. (2009). Influence of shear on the production of extracellular polymeric substances in membrane bioreactors. Water Research, 43(17), 4305-4315.
Minamino, T., & Imada, K. (2015). The bacterial flagellar motor and its structural diversity. Trends in Microbiology, 23(5), 267-274. https://doi.org/10.1016/j.tim.2014.12.011
Monod, J. (2012). The growth of bacterial cultures. Selected Papers in Molecular Biology by Jacques Monod, 139.
Nikel, P. I., Chavarría, M., Fuhrer, T., Sauer, U., & De Lorenzo, V. (2015). Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. Journal of Biological Chemistry, 290(43), 25920-25932.
Palomares, L. A., & Ramírez, O. T. (2019). Hydrodynamic stress and heterogeneities in animal cell culture.
Qi, H. N., Goudar, C. T., Michaels, J. D., Henzler, H.-J., Jovanovic, G. N., & Konstantinov, K. B. (2003). Experimental and theoretical analysis of tubular membrane aeration for mammalian cell bioreactors. Biotechnology Progress, 19(4), 1183-1189.
Routledge, S. J. (2012). Beyond de-foaming: The effects of antifoams on bioprocess productivity. Computational and Structural Biotechnology Journal, 3(4), e201210001.
Santos-Moreau, V., Lopes, J. C. B., & Fonte, C. P. (2019). Estimation of kla values in bench-scale stirred tank reactors with self-inducing impeller by multiphase CFD simulations. Chemical Engineering & Technology, 42(8), 1545-1554.
Schirmer, C., Blaschczok, K., Husemann, U., Leupold, M., Zahnow, C., Rupprecht, J., Glöckler, R., Greller, G., Pörtner, R., Eibl, R., & Eibl, D. (2017). Standardized qualification of stirred bioreactors for microbial biopharmaceutical production processes. Chemie Ingenieur Technik, 89(12), 1766-1772. https://doi.org/10.1002/cite.201700039
Schlembach, I., Hosseinpour Tehrani, H., Blank, L. M., Büchs, J., Wierckx, N., Regestein, L., & Rosenbaum, M. A. (2020). Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnology for Biofuels, 13(1), 207. https://doi.org/10.1186/s13068-020-01835-4
Seidel, S., Maschke, R. W., Werner, S., Jossen, V., & Eibl, D. (2021). Oxygen mass transfer in biopharmaceutical processes: Numerical and experimental approaches. Chemie Ingenieur Technik, 93(1-2), 42-61. https://doi.org/10.1002/cite.202000179
Sha, R., Meng, Q., & Jiang, L. (2012). The addition of ethanol as defoamer in fermentation of rhamnolipids. Journal of Chemical Technology & Biotechnology, 87(3), 368-373.
Syron, E., & Casey, E. (2008). Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology, 42(6), 1833-1844. https://doi.org/10.1021/es0719428
Tiso, T., Ihling, N., Kubicki, S., Biselli, A., Schonhoff, A., Bator, I., Thies, S., Karmainski, T., Kruth, S., Willenbrink, A.-L., Loeschcke, A., Zapp, P., Jupke, A., Jaeger, K. E., Büchs, J., & Blank, L. M. (2020). Integration of genetic and process engineering for optimized rhamnolipid production using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 8, 976. https://doi.org/10.3389/fbioe.2020.00976
Tiso, T., Zauter, R., Tulke, H., Leuchtle, B., Li, W.-J., Behrens, B., Wittgens, A., Rosenau, F., Hayen, H., & Blank, L. M. (2017). Designer rhamnolipids by reduction of congener diversity: Production and characterization. Microbial Cell Factories, 16(1), 225. https://doi.org/10.1186/s12934-017-0838-y
Vardar-Sukan, F. (1998). Foaming: Consequences, prevention and destruction. Biotechnology Advances, 16(5-6), 913-948.
Vorlop, J., & Lehmann, J. (1988). Scale-up of bioreactors for fermentation of mammalian cell cultures with special reference to oxygen supply and microcarrier mixing. Chemical Engineering & Technology, 11(1), 171-178.
Wagner, B. A., Venkataraman, S., & Buettner, G. R. (2011). The rate of oxygen utilization by cells. Free Radical Biology and Medicine, 51(3), 700-712. https://doi.org/10.1016/j.freeradbiomed.2011.05.024
Willis, R. B., Montgomery, M. E., & Allen, P. R. (1996). Improved method for manual, colorimetric determination of total Kjeldahl nitrogen using salicylate. Journal of Agricultural and Food Chemistry, 44(7), 1804-1807.
Wittgens, A., Tiso, T., Arndt, T. T., Wenk, P., Hemmerich, J., Müller, C., Wichmann, R., Küpper, B., Zwick, M., Wil-helm, S., Hausmann, R., Syldatk, C., Rosenau, F., & Blank, L. M. (2011). Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 10(1), 80. https://doi.org/10.1186/1475-2859-10-80