PKM2 controls the translation of TFE3 to maintain the integrity of the Golgi apparatus for the survival of HeLa and ME-180 cervical cancer cells.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
06 2023
Historique:
revised: 09 01 2023
received: 21 07 2022
accepted: 25 01 2023
medline: 23 6 2023
pubmed: 28 1 2023
entrez: 27 1 2023
Statut: ppublish

Résumé

The M2 isoform of pyruvate kinase (PKM2) is abundantly expressed in various cancer cells and associated with tumorigenesis, tumour proliferation and tumour progression. However, the role of PKM2 in these oncological processes is not fully understood. In the present study, we depleted PKM2 expression using RNA interference (RNAi), which induced apoptotic cell death and was accompanied by the downregulation of GM130, giantin, and p115 in HeLa and ME-180 cervical cancer cells. The decreased expression of these proteins caused structural and functional disturbances in the Golgi apparatus, which manifested as the dispersion of the Golgi apparatus and delayed anterograde trafficking from the ER to the Golgi. The transcription factor, TFE3, which functions in the Golgi stress response, was responsible for the expression of GM130, giantin, and p115 that maintained the integrity of the organelle under normal growth conditions. In PKM2-knockdown cells, the translation of TFE3 was markedly reduced. Knockdown of TFE3 by RNAi resulted in the downregulation of GM130, giantin, and p115, dispersion of the Golgi apparatus, and apoptotic cell death, similar to those observed following PKM2 knockdown. Conversely, the exogenous expression of TFE3 in PKM2 knockdown cells partially mitigated the aforementioned effects. We also demonstrated that PKM2 bound to the 5' UTR on TFE3 mRNA and promoted translation. This study is the first to identify a new function for PKM2, which activates the basal Golgi stress response to maintain the integrity of the Golgi apparatus through the translation of TFE3 and promote cancer cell survival.

Identifiants

pubmed: 36705569
doi: 10.1111/febs.16740
doi:

Substances chimiques

Membrane Proteins 0
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors 0
TFE3 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3221-3242

Informations de copyright

© 2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, Ogrodzinski M, Hecht V, Xu K, Acevedo PN et al. (2015) Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 57, 95-107.
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL & Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.
Yu L, Chen X, Wang L & Chen S (2016) The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 7, 38908-38926.
Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, Wang L, Yang W & Lu Z (2016) PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun 7, 12431.
Lu J, Chen M, Gao S, Yuan J, Zhu Z & Zou X (2018) LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett 15, 4358-4364.
Zhou CF, Li XB, Sun H, Zhang B, Han YS, Jiang Y, Zhuang QL, Fang J & Wu GH (2012) Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 64, 775-782.
Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T et al. (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32, 364-376.
Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K et al. (2012) EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 48, 771-784.
Schäfer D, Hamm-Künzelmann B & Brand K (1997) Glucose regulates the promoter activity of aldolase a and pyruvate kinase M2 via dephosphorylation of Sp1. FEBS Lett 417, 325-328.
Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, Yung WK, Weinstein JN, Tan M & Yao J (2014) Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 5, 8202-8210.
Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y et al. (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42, 719-730.
Viana R, Lujan P & Sanz P (2015) The laforin/malin E3-ubiquitin ligase complex ubiquitinates pyruvate kinase M1/M2. BMC Biochem 16, 24.
Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, Li J, Li S, Wang Y, Yan G et al. (2017) CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene 36, 4191-4200.
Gao X, Wang H, Yang JJ, Liu X & Liu ZR (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45, 598-609.
Keller KE, Tan IS & Lee YS (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338, 1069-1072.
Keller KE, Doctor ZM, Dwyer ZW & Lee YS (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53, 700-709.
Yang YC, Cheng TY, Huang SM, Su CY, Yang PW, Lee JM, Chen CK, Hsiao M, Hua KT & Kuo ML (2016) Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90-EGFR association. Oncogene 35, 3387-3398.
Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R et al. (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108, 4129-4134.
Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43, 969-980.
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK & Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696.
Li Z, Yang P & Li Z (2014) The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta 1846, 285-296.
He Y, Gao M, Cao Y, Tang H, Liu S & Tao Y (2017) Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer 1868, 359-371.
Yu Z, Huang L, Qiao P, Jiang A, Wang L, Yang T, Tang S, Zhang W & Ren C (2016) PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem Biophys Res Commun 473, 953-958.
Dombrauckas JD, Santarsiero BD & Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417-9429.
Vander Heiden MG, Cantley LC & Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
Akhtar K, Gupta V, Koul A, Alam N, Bhat R & Bamezai RN (2009) Differential behavior of missense mutations in the intersubunit contact domain of the human pyruvate kinase M2 isozyme. J Biol Chem 284, 11971-11981.
Israelsen WJ & Vander Heiden MG (2015) Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol 43, 43-51.
Li L, Peng G, Liu X, Zhang Y, Han H & Liu ZR (2020) Pyruvate kinase M2 coordinates metabolism switch between glycolysis and glutaminolysis in cancer cells. iScience 23, 101684.
Goldberg MS & Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209, 217-224.
Suzuki A, Puri S, Leland P, Puri A, Moudgil T, Fox BA, Puri RK & Joshi BH (2019) Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer. PLoS ONE 14, e0217131.
Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y et al. (2010) Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci 101, 1447-1453.
Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X & Lu Y (2011) Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol 137, 65-72.
Bottone MG, Santin G, Aredia F, Bernocchi G, Pellicciari C & Scovassi AI (2013) Morphological features of organelles during apoptosis: an overview. Cells 2, 294-305.
Machamer CE (2015) The Golgi complex in stress and death. Front Neurosci 9, 421.
Park K, Ju S, Kim N & Park SY (2021) The Golgi complex: a hub of the secretory pathway. BMB Rep 54, 246-252.
Liu C, Mei M, Li Q, Roboti P, Pang Q, Ying Z, Gao F, Lowe M & Bao S (2017) Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice. Proc Natl Acad Sci USA 114, 346-351.
Zhang X (2021) Alterations of Golgi structural proteins and glycosylation defects in cancer. Front Cell Dev Biol 9, 665289.
Liu J, Huang Y, Li T, Jiang Z, Zeng L & Hu Z (2021) The role of the Golgi apparatus in disease (review). Int J Mol Med 47, 38.
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W & Lu W (2020) The Golgi apparatus may be a potential therapeutic target for apoptosis-related neurological diseases. Front Cell Dev Biol 8, 830.
Walker A, Ward C, Sheldrake TA, Dransfield I, Rossi AG, Pryde JG & Haslett C (2004) Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem Biophys Res Commun 316, 6-11.
Lowe M, Lane JD, Woodman PG & Allan VJ (2004) Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117, 1139-1150.
Chiu R, Novikov L, Mukherjee S & Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159, 637-648.
Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ & Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156, 495-509.
Hicks SW & Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744, 406-414.
Sasaki K & Yoshida H (2019) Golgi stress response and organelle zones. FEBS Lett 593, 2330-2340.
Cheng JP, Betin VM, Weir H, Shelmani GM, Moss DK & Lane JD (2010) Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. Cell Death Dis 1, e82.
Wang M & Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14, 581-597.
Walter P & Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086.
Oku M, Tanakura S, Uemura A, Sohda M, Misumi Y, Taniguchi M, Wakabayashi S & Yoshida H (2011) Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct Funct 36, 1-12.
Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, Yamaguchi S, Shimada Y, Nakamura Y, Matsumura Y et al. (2015) TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct 40, 13-30.
Taniguchi M & Yoshida H (2017) TFE3, HSP47, and CREB3 pathways of the mammalian Golgi stress response. Cell Struct Funct 42, 27-36.
Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G & Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273, 33533-33539.
Tabas I & Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13, 184-190.
Hetz C, Zhang K & Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21, 421-438.
Sbodio JI, Snyder SH & Paul BD (2018) Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease. Proc Natl Acad Sci USA 115, 780-785.
Paul BD (2021) Signaling overlap between the Golgi stress response and cysteine metabolism in Huntington's disease. Antioxidants (Basel) 10, 1468.
Eisenberg-Lerner A, Benyair R, Hizkiahou N, Nudel N, Maor R, Kramer MP, Shmueli MD, Zigdon I, Cherniavsky Lev M, Ulman A et al. (2020) Golgi organization is regulated by proteasomal degradation. Nat Commun 11, 409.
Nakamura N, Lowe M, Levine TP, Rabouille C & Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89, 445-455.
Sohda M, Misumi Y, Yano A, Takami N & Ikehara Y (1998) Phosphorylation of the vesicle docking protein p115 regulates its association with the Golgi membrane. J Biol Chem 273, 5385-5388.
Sönnichsen B, Lowe M, Levine T, Jämsä E, Dirac-Svejstrup B & Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140, 1013-1021.
Boncompain G, Divoux S, Gareil N, de Forges H, Lescure A, Latreche L, Mercanti V, Jollivet F, Raposo G & Perez F (2012) Synchronization of secretory protein traffic in populations of cells. Nat Methods 9, 493-498.
Pacheco-Fernandez N, Pakdel M & Von Blume J (2021) Retention using selective hooks (RUSH) cargo sorting assay for protein vesicle tracking in HeLa cells. Bio Protoc 11, e3936.
Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ & Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389, 81-85.
Freeze HH & Kranz C (2010) Endoglycosidase and glycoamidase release of N-linked glycans. Curr Protoc Mol Biol Chapter 17, Unit 17.13A.
Yang TH, Wang CY, Tsai HC & Liu CT (2021) Human IRES atlas: an integrative platform for studying IRES-driven translational regulation in humans. Database (Oxford) 2021, baab025.
Mokrejs M, Masek T, Vopálensky V, Hlubucek P, Delbos P & Pospísek M (2010) IRESite--a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38, D131-D136.
Mitchell SA, Spriggs KA, Coldwell MJ, Jackson RJ & Willis AE (2003) The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11, 757-771.
Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M & Willis AE (2000) Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19, 899-905.
Ungureanu NH, Cloutier M, Lewis SM, de Silva N, Blais JD, Bell JC & Holcik M (2006) Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem 281, 15155-15163.
Sato K, Akiyama M & Sakakibara Y (2021) RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun 12, 941.
Shatsky IN, Dmitriev SE, Terenin IM & Andreev DEE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30, 285-293.
Terenin IM, Andreev DE, Dmitriev SE & Shatsky IN (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41, 1807-1816.
Andreev DE, Dmitriev SE, Zinovkin R, Terenin IM & Shatsky IN (2012) The 5′ untranslated region of Apaf-1 mRNA directs translation under apoptosis conditions via a 5′ end-dependent scanning mechanism. FEBS Lett 586, 4139-4143.
Ferri KF & Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-E263.
Oakes SA (2020) Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol 190, 934-946.
Taguchi Y, Horiuchi Y, Kano F & Murata M (2017) Novel prosurvival function of Yip1A in human cervical cancer cells: constitutive activation of the IRE1 and PERK pathways of the unfolded protein response. Cell Death Dis 8, e2718.
Gao J, Gao A, Liu W & Chen L (2021) Golgi stress response: a regulatory mechanism of Golgi function. Biofactors 47, 964-974.
Silvera D, Formenti SC & Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10, 254-266.
Robichaud N, Sonenberg N, Ruggero D & Schneider RJ (2019) Translational control in cancer. Cold Spring Harb Perspect Biol 11, a032896.
Xu Y & Ruggero D (2020) The role of translation control in tumorigenesis and its therapeutic implications. Annu Rev Cancer Biol 4, 437-457.
Walters B & Thompson SR (2016) Cap-independent translational control of carcinogenesis. Front Oncol 6, 128.
Willimott S & Wagner SD (2010) Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38, 1571-1575.
Philippe C, Dubrac A, Quelen C, Desquesnes A, Van Den Berghe L, Ségura C, Filleron T, Pyronnet S, Prats H, Brousset P et al. (2016) PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress. Sci Signal 9, ra44.

Auteurs

Yuki Taguchi (Y)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan.

Kengo Ito (K)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.

Fumi Kano (F)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH