Phytochemical Analysis, GC-MS Identification of Bioactive Compounds, and In Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy.
Alkaloids
GC–MS identification
Gamboge
Phenolics
Terpenoids
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
accepted:
10
01
2023
medline:
3
7
2023
pubmed:
28
1
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
The objective of this study was to evaluate phytochemicals present in the resin of Garcinia indica (Gamboge). We assessed the phytochemical constituents and antioxidant potential of acetone, methanol, and water extracts of resin. Acetone and methanol extracts contain a high amount of phenolics (183.90 and 182.85 mg GAE (gallic acid equivalent)/g) and flavonoids (72.65 and 71.33 mg QE (quercetin equivalent)/g), respectively, whereas methanol extract had the highest 7.62 mg AE (atropine equivalent)/g of alkaloid. GC-MS analysis of acetone extract identified 15 compounds and the majority of them were terpenoids, and 9,19-cyclo-25,26-epoxyergostan-3-ol,4,4,14-trimethyl-, acetate was the major compound among all terpenoids. Both acetone and methanol extracts showed excellent antioxidant activity as assessed by DPPH, total antioxidant activity, and FRAP assays. This experimental evidence suggests that G. indica resin is an excellent source of bioactive compounds and can be explored for its medicinal applications.
Identifiants
pubmed: 36705843
doi: 10.1007/s12010-023-04343-x
pii: 10.1007/s12010-023-04343-x
doi:
Substances chimiques
Antioxidants
0
Plant Extracts
0
Methanol
Y4S76JWI15
Acetone
1364PS73AF
Phytochemicals
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4570-4582Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Langenheim, J. H. (2003). Plant resins: Chemistry, evolution, ecology and ethnobotany. Timber press.
Murthy, H. N. (2021). Chemical constituents and applications of gums, resins, and latexes of plant origin. In H. N. Murthy (Ed.), Gums, resins and latexes of plant origin. Reference series in phytochemistry (pp. 1–21). Springer. https://doi.org/10.1007/978-3-030-76523-1_1-1
POWO (2022) Plants of the world online. Kew: Royal Botanic Gardens. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:19345-1 . Accessed on 10 October 2022.
Murthy, H. N., & Yadav, G. G. (2021). Chemistry and biological activities of Garcinia resin. In H. N. Murthy (Ed.), Gums, resins, and latexes of plant origin. Reference series in phytochemistry (pp. 479–515). Springer. https://doi.org/10.1007/978-3-030-76523-1_24-1
Dachriyanus, Asjar, N. S., & Susanti, M. (2017). Determination of rubraxanthone in the latex of Asam Kandis (Garcinia cowa Roxb) by reverse phase high performance liquid chromatography. Pharmacognosy Journal, 9, 288–291. https://doi.org/10.5530/pj.2017.2.50
doi: 10.5530/pj.2017.2.50
Khare, K. P. (2007). Indian medicinal plants: an illustrated dictionary. Springer New York. https://doi.org/10.1007/978-0-387-70638-2
Murthy, H. N., Dandin, V. S., Dalawai, D., Park, S. Y., & Paek, K. Y. (2019). Bioactive compounds from Garcinia fruits of high economic value for food and health. In J. M. Mérillon & K. Ramawat (Eds.), Bioactive molecules in food. Reference series in phytochemistry (pp 1643–1670). Springer. https://doi.org/10.1007/978-3-319-78030-6_65
Baliga, M. S., Bhat, H. P., Pai, R. J., Boloor, R., & Palatty, P. L. (2011). The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Research International, 44, 1790–1799. https://doi.org/10.1016/j.foodres.2011.01.064
doi: 10.1016/j.foodres.2011.01.064
Aral, S., & Rameshkumar, K. B. (2016). Gamboge - the bark exudate from Garcinia species. In K. B. Rameshkumar, (Ed.), Diversity of Garcinia species in the Western Ghats: phytochemical perspective (pp 162–169). Jawaharlal Nehru Tropical Botanic Garden and Research Institute.
Harborne, J. B. (1998). Phytochemical methods – a guide to modern techniques of plant analysis. Chapman and Hall.
Murthy, H. N., Dewir, Y. H., Dalawai, D., & Al-Suhaibani, N. (2022). Comparative physicochemical analysis of seed oils of wild cucumber (Cucumis sativus var. hardwickii (Royle) Alef.), cucumber (Cucumis sativus L. var. sativus), and gherkin (Cucumis anguria L.). South African Journal of Botany, 145, 186–191. https://doi.org/10.1016/j.sajb.2021.06.004
doi: 10.1016/j.sajb.2021.06.004
Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
doi: 10.1007/s12161-014-9814-x
Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17–20.
Yadav, G. G., Murthy, H. N., & Dewir, Y. H. (2022). Nutritional composition and in vitro antioxidant activities of seed kernel and seed oil of Balanites roxburghii: An underutilized species. Horticulturae, 8, 798. https://doi.org/10.3390/horticulturae8090798
doi: 10.3390/horticulturae8090798
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
doi: 10.1006/abio.1999.4019
pubmed: 10222007
Benzie, I. F. F., & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
doi: 10.1016/S0076-6879(99)99005-5
pubmed: 9916193
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis Oliv. Engl resin BMC Chemistry, 16, 48. https://doi.org/10.1186/s13065-022-00841-x
Murthy, H. N., Joseph, K. S., Payamalle, S., Dalawai, D., & Ganapumane, V. (2017). Chemical composition, larvicidal and antioxidant activities of latex from Garcinia morella (Gaertn.) Desr. Journal of Parasitic Diseases, 41, 666–670. https://doi.org/10.1007/s12639-016-0863-5
doi: 10.1007/s12639-016-0863-5
pubmed: 28848256
Dorly, A., Tjitrosemito, S., Poerwanto, R., & Juliarni. (2008). Secretory duct structure and phytochemistry compounds of yellow latex in mangosteen fruit. Hayati Journal of Biosciences, 15, 99–104. https://doi.org/10.4308/hjb.15.3.99
doi: 10.4308/hjb.15.3.99
Beale, D. J., Pinu, F. R., Kouremenos, K. A., Poojary, M. M., Narayana, V. K., Boughton, B. A., Kanojia, K., Dayalan, S., Jones, O. A. H., & Dias, D. A. (2018). Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics, 14, 152. https://doi.org/10.1007/s11306-018-1449-2
doi: 10.1007/s11306-018-1449-2
pubmed: 30830421
Li, R., Narita, R., Ouda, R., Kimura, C., Nishimura, H., Yatagai, M., Fujita, T., & Watanabe, T. (2018). Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomyocarditis virus. RSC Advances, 8, 35888–35896. https://doi.org/10.1039/C8RA07096B
doi: 10.1039/C8RA07096B
pubmed: 35558500
pmcid: 9088284
Kocaçalışkan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift für Naturforschung C, 61, 639–642. https://doi.org/10.1515/znc-2006-9-1004
doi: 10.1515/znc-2006-9-1004
Francomano, F., Caruso, A., Barbarossa, A., Fazio, A., la Torre, C., Ceramella, J., Mallamaci, R., Saturnino, C., Iacopetta, D., & Sinicropi, M. S. (2019). β-Caryophyllene: A sesquiterpene with countless biological properties. Applied Sciences, 9, 5420. https://doi.org/10.3390/app9245420
doi: 10.3390/app9245420
Dahham, S. S., Tabana, Y. M., Iqbal, M. A., Ahamed, M. B. K., Ezzat, M. O., Majid, A. S. A., & Majid, A. M. S. A. (2015). The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 20, 11808–11829. https://doi.org/10.3390/molecules200711808
doi: 10.3390/molecules200711808
pubmed: 26132906
pmcid: 6331975
Türkez, H., Çelik, K., & Toğar, B. (2014). Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology, 66, 597–603. https://doi.org/10.1007/s10616-013-9611-1
doi: 10.1007/s10616-013-9611-1
pubmed: 24287609
Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969–978. https://doi.org/10.1016/0031-9422(88)80254-1
doi: 10.1016/0031-9422(88)80254-1
Christodouleas, D., Papadopoulos, K., & Calokerinos, A. C. (2011). Determination of total antioxidant activity of edible oils as well as their aqueous and organic extracts by chemiluminescence. Food Analytical Methods, 4, 475–484. https://doi.org/10.1007/s12161-010-9189-6
doi: 10.1007/s12161-010-9189-6