Insight into autophagy in platinum resistance of cancer.


Journal

International journal of clinical oncology
ISSN: 1437-7772
Titre abrégé: Int J Clin Oncol
Pays: Japan
ID NLM: 9616295

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 28 08 2022
accepted: 16 01 2023
pubmed: 28 1 2023
medline: 9 3 2023
entrez: 27 1 2023
Statut: ppublish

Résumé

Platinum drugs, as a class of widely used chemotherapy agents, frequently appear in the treatment of cancer at different phrases. However, platinum resistance is the major bottleneck of platinum drugs for exerting anti-tumor effect. At present, the mechanism of platinum resistance has been thoroughly explored in terms of drug delivery methods, DNA damage repair function, etc., but it has not yet been translated into an effective weapon for reversing platinum resistance. Recently, autophagy has been proved to be closely related to platinum resistance, and the involved molecular mechanism may provide a new perspective on platinum resistance. The aim of this review is to sort out the studies related to autophagy and platinum resistance, and to focus on summarizing the relevant molecular mechanisms, so as to provide clues for future studies related to autophagy and platinum resistance.

Identifiants

pubmed: 36705869
doi: 10.1007/s10147-023-02301-5
pii: 10.1007/s10147-023-02301-5
doi:

Substances chimiques

Platinum 49DFR088MY
Antineoplastic Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

354-362

Subventions

Organisme : The applied basic research program, Science & Technology Department of Sichuan Province
ID : 2020YJ0451
Organisme : Introduction Foundation of High-level Talents of The First Affiliated Hospital, Chengdu Medical College
ID : CYFY-GQ22
Organisme : The Special Project of the First Affiliated Hospital, Chengdu Medical College
ID : CYFY2019ZD03
Organisme : The Natural Science Foundation of Sichuan Province
ID : 2023NSFSC0729

Informations de copyright

© 2023. The Author(s) under exclusive licence to Japan Society of Clinical Oncology.

Références

Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30
pubmed: 31912902 doi: 10.3322/caac.21590
Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584
pubmed: 17625587 doi: 10.1038/nrc2167
Valle J, Wasan H, Palmer DH et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362:1273–1281
pubmed: 20375404 doi: 10.1056/NEJMoa0908721
Katano A, Takahashi W, Yamashita H et al (2018) Radiotherapy alone and with concurrent chemotherapy for nasopharyngeal carcinoma: A retrospective study. Med (Baltim) 97:e0502
doi: 10.1097/MD.0000000000010502
Chen F, Luo H, Xing L et al (2018) Feasibility and efficiency of concurrent chemoradiotherapy with capecitabine and cisplatin versus radiotherapy alone for elderly patients with locally advanced esophageal squamous cell carcinoma: experience of two centers. Thorac Cancer 9:59–65
pubmed: 29024498 doi: 10.1111/1759-7714.12536
Meng XY, Liao Y, Liu XP et al (2016) Concurrent cisplatin-based chemoradiotherapy versus exclusive radiotherapy in high-risk cervical cancer: a meta-analysis. Onco Targets Ther 9:1875–1888
pubmed: 27099519 pmcid: 4821385 doi: 10.2147/OTT.S97436
Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092
pubmed: 29658856 doi: 10.1056/NEJMoa1801005
Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301
pubmed: 29863955 doi: 10.1056/NEJMoa1716948
Rosenberg B, VanCamp L, Trosko JE et al (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386
pubmed: 5782119 doi: 10.1038/222385a0
Vasconcellos VF, Marta GN, da Silva EM, et al. (2020) Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev 1:CD009256.
Jalal S, Earley JN, Turchi JJ (2011) DNA repair: from genome maintenance to biomarker and therapeutic target. Clin Cancer Res 17:6973–6984
pubmed: 21908578 pmcid: 3218201 doi: 10.1158/1078-0432.CCR-11-0761
Bonanno L, Favaretto A, Rosell R (2014) Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer Res 34:493–501
pubmed: 24403507
Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378
pubmed: 25058905 pmcid: 4146684 doi: 10.1016/j.ejphar.2014.07.025
Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294
pubmed: 22258607 doi: 10.1038/nature10760
Achkar IW, Abdulrahman N, Al-Sulaiti H et al (2018) Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med 16:96
pubmed: 29642900 pmcid: 5896132 doi: 10.1186/s12967-018-1471-1
Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42
pubmed: 30633901 pmcid: 6347410 doi: 10.1016/j.cell.2018.09.048
Yang Y, Klionsky DJ (2020) Autophagy and disease: unanswered questions. Cell Death Differ 27:858–871
pubmed: 31900427 pmcid: 7206137 doi: 10.1038/s41418-019-0480-9
Ma B, Cao W, Li W et al (2014) Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res 24:912–924
pubmed: 24980960 pmcid: 4123296 doi: 10.1038/cr.2014.84
Hu YL, Jahangiri A, Delay M et al (2012) Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res 72:4294–4299
pubmed: 22915758 pmcid: 3432684 doi: 10.1158/0008-5472.CAN-12-1076
Buchser WJ, Laskow TC, Pavlik PJ et al (2012) Cell-mediated autophagy promotes cancer cell survival. Cancer Res 72:2970–2979
pubmed: 22505650 pmcid: 3505669 doi: 10.1158/0008-5472.CAN-11-3396
Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510
pubmed: 15928714 doi: 10.1038/nrm1666
Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967
pubmed: 17972889 pmcid: 2866167 doi: 10.1038/nrc2254
Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351
pubmed: 17018585 doi: 10.1158/0008-5472.CAN-06-1597
Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74:647–651
pubmed: 24459182 doi: 10.1158/0008-5472.CAN-13-2966
Garcia-Cano J, Ambroise G, Pascual-Serra R et al (2015) Exploiting the potential of autophagy in cisplatin therapy: a new strategy to overcome resistance. Oncotarget 6:15551–15565
pubmed: 26036632 pmcid: 4558170 doi: 10.18632/oncotarget.3902
Pan ST, Zhou J, Yang F et al (2020) Proteomics reveals a therapeutic vulnerability via the combined blockade of APE1 and autophagy in lung cancer A549 cells. BMC Cancer 20:634
pubmed: 32641008 pmcid: 7346405 doi: 10.1186/s12885-020-07111-w
Chung LY, Tang SJ, Wu YC et al (2020) Platinum-based combination chemotherapy triggers cancer cell death through induction of BNIP3 and ROS, but not autophagy. J Cell Mol Med 24:1993–2003
pubmed: 31856355 doi: 10.1111/jcmm.14898
Miyamoto M, Takano M, Aoyama T et al (2017) Inhibition of autophagy protein LC3A as a therapeutic target in ovarian clear cell carcinomas. J Gynecol Oncol 28:e33
pubmed: 28382796 pmcid: 5391392 doi: 10.3802/jgo.2017.28.e33
Li W, Qin X, Wang B et al (2020) MiTF is associated with chemoresistance to cisplatin in A549 lung cancer cells via modulating lysosomal biogenesis and autophagy. Cancer Manag Res 12:6563–6573
pubmed: 32801894 pmcid: 7398682 doi: 10.2147/CMAR.S255939
Circu M, Cardelli J, Barr MP et al (2017) Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells. PLoS ONE 12:e0184922
pubmed: 28945807 pmcid: 5612465 doi: 10.1371/journal.pone.0184922
Zou Z, Wu L, Ding H et al (2012) MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 287:4148–4156
pubmed: 22157765 doi: 10.1074/jbc.M111.307405
Aga T, Endo K, Tsuji A et al (2019) Inhibition of autophagy by chloroquine makes chemotherapy in nasopharyngeal carcinoma more efficient. Auris Nasus Larynx 46:443–450
pubmed: 30514592 doi: 10.1016/j.anl.2018.10.013
Hu C, Zou MJ, Zhao L et al (2012) E Platinum, a newly synthesized platinum compound, induces autophagy via inhibiting phosphorylation of mTOR in gastric carcinoma BGC-823 cells. Toxicol Lett 210:78–86
pubmed: 22322152 doi: 10.1016/j.toxlet.2012.01.019
Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516
pubmed: 12835670 doi: 10.1038/nrc1123
Ma H, Li Y, Wang X et al (2019) PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis 10:166
pubmed: 30778048 pmcid: 6379381 doi: 10.1038/s41419-019-1415-6
Long F, Liu W, Jia P et al (2018) HIF-1alpha-induced autophagy contributes to cisplatin resistance in ovarian cancer cells. Pharmazie 73:533–536
pubmed: 30223937
Nguyen EV, Huhtinen K, Goo YA et al (2017) Hyper-phosphorylation of sequestosome-1 distinguishes resistance to cisplatin in patient derived high grade serous ovarian cancer cells. Mol Cell Proteomics 16:1377–1392
pubmed: 28455291 pmcid: 5500768 doi: 10.1074/mcp.M116.058321
Meng J, Liu K, Shao Y et al (2020) ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis 11:137
pubmed: 32080166 pmcid: 7033197 doi: 10.1038/s41419-020-2327-1
Chen J, Wang Q, Yin FQ et al (2015) MTRR silencing inhibits growth and cisplatin resistance of ovarian carcinoma via inducing apoptosis and reducing autophagy. Am J Transl Res 7:1510–1527
pubmed: 26550452 pmcid: 4626414
Liang N, Jia L, Liu Y et al (2013) ATM pathway is essential for ionizing radiation-induced autophagy. Cell Signal 25:2530–2539
pubmed: 23993957 doi: 10.1016/j.cellsig.2013.08.010
Ali R, Alabdullah M, Miligy I, et al. (2019) ATM regulated PTEN degradation Is XIAP E3 ubiquitin ligase mediated in p85alpha deficient cancer cells and influence platinum sensitivity. Cells 8.
Li RN, Liu B, Li XM et al (2017) DACT1 Overexpression in type I ovarian cancer inhibits malignant expansion and cis-platinum resistance by modulating canonical Wnt signalling and autophagy. Sci Rep 7:9285
pubmed: 28839145 pmcid: 5570946 doi: 10.1038/s41598-017-08249-7
Miyamoto M, Takano M, Aoyama T et al (2018) Phenoxodiol increases cisplatin sensitivity in ovarian clear cancer cells through XIAP down-regulation and autophagy inhibition. Anticancer Res 38:301–306
pubmed: 29277787
Zou Y, Lu Y, Wei D (2004) Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52:5032–5039
pubmed: 15291471 doi: 10.1021/jf049571r
Zhu X, Ji M, Han Y et al (2017) PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int J Oncol 50:835–846
pubmed: 28197632 doi: 10.3892/ijo.2017.3873
Cheng HJ, Wu TH, Chien CT et al (2016) Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction. Small 12:6124–6133
pubmed: 27717137 doi: 10.1002/smll.201602374
Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33
pubmed: 33433946 doi: 10.3322/caac.21654
Ruiz-Cordero R, Devine WP (2020) Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 13:17–33
pubmed: 32005431 doi: 10.1016/j.path.2019.11.002
Lin YX, Wang Y, An HW et al (2019) Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett 19:2968–2978
pubmed: 30924343 doi: 10.1021/acs.nanolett.9b00083
Yuwen D, Mi S, Ma Y et al (2017) Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy. Anticancer Drugs 28:967–976
pubmed: 28692436 doi: 10.1097/CAD.0000000000000537
Ma Y, Yuwen D, Chen J et al (2019) Exosomal transfer of cisplatin-induced miR-425-3p confers cisplatin resistance in NSCLC through activating autophagy. Int J Nanomed 14:8121–8132
doi: 10.2147/IJN.S221383
Yuwen D, Ma Y, Wang D et al (2019) Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev 28:163–173
pubmed: 30228154 doi: 10.1158/1055-9965.EPI-18-0569
Bozok Cetintas V, Tetik Vardarli A, Duzgun Z et al (2016) miR-15a enhances the anticancer effects of cisplatin in the resistant non-small cell lung cancer cells. Tumour Biol 37:1739–1751
pubmed: 26314859 doi: 10.1007/s13277-015-3950-9
Guo S, Zhang L, Zhang Y et al (2019) Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition. Aging (Albany NY) 11:7553–7569
pubmed: 31532756 doi: 10.18632/aging.102271
Peng D, Wei J, Gan Y et al (2019) Testis developmental related gene 1 regulates the chemosensitivity of seminoma TCam-2 cells to cisplatin via autophagy. J Cell Mol Med 23:7773–7784
pubmed: 31496041 pmcid: 6815826 doi: 10.1111/jcmm.14654
Huang Y, Liu L, Cai J et al (2020) The efficacy and response predictors of platinum-based neoadjuvant chemotherapy in locally advanced cervical cancer. Cancer Manag Res 12:10469–10477
pubmed: 33122946 pmcid: 7588671 doi: 10.2147/CMAR.S270258
Yamada Y, Higuchi K, Nishikawa K et al (2015) Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naive patients with advanced gastric cancer. Ann Oncol 26:141–148
pubmed: 25316259 doi: 10.1093/annonc/mdu472
Vermorken JB, Mesia R, Rivera F et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127
pubmed: 18784101 doi: 10.1056/NEJMoa0802656
Li Q, Wang M, Zhang Y et al (2020) BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis. Acta Biochim Biophys Sin (Shanghai) 52:1131–1139
pubmed: 33085742 doi: 10.1093/abbs/gmaa097
Yang F, Yan Z, Nie W et al (2021) LACTB induced apoptosis of oxaliplatin-resistant gastric cancer through regulating autophagy-mediated mitochondrial apoptosis pathway. Am J Transl Res 13:601–616
pubmed: 33594312 pmcid: 7868839
Kaluderovic GN, Mijatovic SA, Zmejkovski BB et al (2012) Platinum(II/IV) complexes containing ethylenediamine-N,N’-di-2/3-propionate ester ligands induced caspase-dependent apoptosis in cisplatin-resistant colon cancer cells. Metallomics 4:979–987
pubmed: 22820831 doi: 10.1039/c2mt20058a
Gao J, Wang W (2019) Knockdown of galectin-1 facilitated cisplatin sensitivity by inhibiting autophagy in neuroblastoma cells. Chem Biol Interact 297:50–56
pubmed: 30365942 doi: 10.1016/j.cbi.2018.10.014
Alsamman K, El-Masry OS (2018) Staurosporine alleviates cisplatin chemoresistance in human cancer cell models by suppressing the induction of SQSTM1/p62. Oncol Rep 40:2157–2162
pubmed: 30106434
Chang Y, Zhang X, Horton JR et al (2009) Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 16:312–317
pubmed: 19219047 pmcid: 2676930 doi: 10.1038/nsmb.1560
Ke XX, Zhang D, Zhu S et al (2014) Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS ONE 9:e106962
pubmed: 25198515 pmcid: 4157855 doi: 10.1371/journal.pone.0106962
Ichikawa A, Fujita Y, Hosaka Y et al (2020) Chaperone-mediated autophagy receptor modulates tumor growth and chemoresistance in non-small cell lung cancer. Cancer Sci 111:4154–4165
pubmed: 32860290 pmcid: 7648026 doi: 10.1111/cas.14629
Salwa A, Ferraresi A, Chinthakindi M, et al. (2021) BECN1 and BRCA1 deficiency sensitizes ovarian cancer to platinum therapy and confers better prognosis. Biomedicines 9.
Wan B, Dai L, Wang L et al (2018) Knockdown of BRCA2 enhances cisplatin and cisplatin-induced autophagy in ovarian cancer cells. Endocr Relat Cancer 25:69–82
pubmed: 29066501 doi: 10.1530/ERC-17-0261
Yin X, Zhang N, Di W (2013) Regulation of LC3-dependent protective autophagy in ovarian cancer cells by protein phosphatase 2A. Int J Gynecol Cancer 23:630–641
pubmed: 23518861 doi: 10.1097/IGC.0b013e3182892cee
Kulshrestha A, Katara GK, Ibrahim SA et al (2019) Targeting V-ATPase isoform restores cisplatin activity in resistant ovarian cancer: inhibition of autophagy, endosome function, and ERK/MEK pathway. J Oncol 2019:2343876
pubmed: 31057611 pmcid: 6463777 doi: 10.1155/2019/2343876
Wang J, Gao H, Liu G et al (2018) Tumor necrosis factor alpha-induced protein 8 expression as a predictor of prognosis and resistance in patients with advanced ovarian cancer treated with neoadjuvant chemotherapy. Hum Pathol 82:239–248
pubmed: 30107189 doi: 10.1016/j.humpath.2018.02.031
Pennati M, Lopergolo A, Profumo V et al (2014) miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 87:579–597
pubmed: 24370341 doi: 10.1016/j.bcp.2013.12.009
Wang L, Chen S, Zhang Z et al (2018) Suppressed OGT expression inhibits cell proliferation while inducing cell apoptosis in bladder cancer. BMC Cancer 18:1141
pubmed: 30453909 pmcid: 6245611 doi: 10.1186/s12885-018-5033-y
Bjorklund M, Roos J, Gogvadze V et al (2011) Resveratrol induces SIRT1- and energy-stress-independent inhibition of tumor cell regrowth after low-dose platinum treatment. Cancer Chemother Pharmacol 68:1459–1467
pubmed: 21479886 doi: 10.1007/s00280-011-1640-x
Dyshlovoy SA, Madanchi R, Hauschild J et al (2017) The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 17:93
pubmed: 28143426 pmcid: 5286817 doi: 10.1186/s12885-017-3085-z

Auteurs

Fang Yang (F)

Clinical Medical College, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Street, Xindu District, Chengdu, 610500, Sichuan, China.
Key Clinical Specialty of Sichuan Province, Chengdu, 610500, Sichuan, China.

Ke Xu (K)

Clinical Medical College, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Street, Xindu District, Chengdu, 610500, Sichuan, China.
Key Clinical Specialty of Sichuan Province, Chengdu, 610500, Sichuan, China.

Yan-Gang Zhou (YG)

Clinical Medical College, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Street, Xindu District, Chengdu, 610500, Sichuan, China.
Key Clinical Specialty of Sichuan Province, Chengdu, 610500, Sichuan, China.

Tao Ren (T)

Clinical Medical College, Chengdu Medical College, Chengdu, 610500, Sichuan, China. rentao509@cmc.edu.cn.
Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Street, Xindu District, Chengdu, 610500, Sichuan, China. rentao509@cmc.edu.cn.
Key Clinical Specialty of Sichuan Province, Chengdu, 610500, Sichuan, China. rentao509@cmc.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH