Audiological outcome after stapes surgery in relation to prosthesis type.
Air–bone gap
Audiological outcome
Prosthesis type
Stapes surgery
Surgery time
Journal
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
ISSN: 1434-4726
Titre abrégé: Eur Arch Otorhinolaryngol
Pays: Germany
ID NLM: 9002937
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
19
10
2022
accepted:
02
01
2023
medline:
29
5
2023
pubmed:
28
1
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
Different techniques are used to fix crimp and CliP® Piston stapes prostheses to the long process of the incus (LPI). The CliP® Piston provides a stiff connection in contrast to the static bended loop of the crimp prosthesis, which imitates the physiological incudostapedial joint (ISJ) and thereby potentially leads to different hearing outcome. In a retrospective single-center study of German-speaking one hundred and ninety patients who underwent stapes surgery CliP® Piston or crimp prostheses between the years of 2016 and 2019 by the same surgeon and in the same setting. Pre- and postoperative bone- (BC) and air-conduction (AC) pure-tone thresholds, pre- and postoperative air-bone gap (ABG) for 0.5, 1, 1.5, 2, 3, 4 kHz and the surgery time were examined. The postoperative bone conduction thresholds were significantly lower in the frequencies between 0.5 and 3 kHz and the mean ABG was < 10 dB in most cases independent of the prosthesis used. Crimp prosthesis showed a significantly better closure of the ABG at 0.5 kHz. The audiological outcome after stapes surgery is dependent on the type of prosthesis used, as reflected by the frequency-specific air-bone gap. The better ABG closure with the crimp prosthesis might be the result of the connection to the LPI imitating the physiological ISJ. The crimp prosthesis may be the better choice if use of hearing aids is expected postoperatively.
Identifiants
pubmed: 36707432
doi: 10.1007/s00405-023-07822-3
pii: 10.1007/s00405-023-07822-3
pmc: PMC10220147
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3171-3176Informations de copyright
© 2023. The Author(s).
Références
Shea JJ Jr (1998) A personal history of stapedectomy. Am J Otol 19(5 Suppl):S2-12
pubmed: 9755788
Toscano ML, Shermetaro C (2022) Stapedectomy. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK562205/
Gjuric M, Rukavina L (2007) Evolution of stapedectomy prostheses over time. Adv Otorhinolaryngol 65:174–178. https://doi.org/10.1159/000098803
doi: 10.1159/000098803
pubmed: 17245042
Bernardeschi D, de Seta D, Canu G et al (2018) Does the diameter of the stapes prosthesis really matter? A prospective clinical study. Laryngoscope 128(8):1922–1926. https://doi.org/10.1002/lary.27021
doi: 10.1002/lary.27021
pubmed: 29171673
Cuda D, Murri A, Mochi P et al (2009) CO2-laser, and piezoelectric stapedotomy: a comparative study. Otol Neurotol 30(8):1111–1115. https://doi.org/10.1097/MAO.0b013e3181b76b08
doi: 10.1097/MAO.0b013e3181b76b08
pubmed: 19730141
Sioshansi PC, Schettino A, Babu SC et al (2021) Bone cement fixation of stapedotomy prostheses: long-term outcomes in primary and revision stapes surgery. Ann Otol Rhinol Laryngol 130(7):769–774. https://doi.org/10.1177/0003489420971337
doi: 10.1177/0003489420971337
pubmed: 33183065
Koukkoullis A, Gerlinger I, Kovács A et al (2021) Comparing intermediate-term hearing results of NiTiBOND and Nitinol prostheses in stapes surgery. J Laryngol Otol 135(9):795–798. https://doi.org/10.1017/S0022215121001821
doi: 10.1017/S0022215121001821
pubmed: 34266511
Weiss NM, Schuldt S, Großmann W et al (2019) Stapes surgery leads to significant improvement in quality of life, independently from the surgical method: evaluation of stapes surgery using different prostheses and different quality of life measurements. Eur Arch Otorhinolaryngol 276(11):2975–2982. https://doi.org/10.1007/s00405-019-05577-4
doi: 10.1007/s00405-019-05577-4
pubmed: 31428864
Teschner M, Lilli G, Lenarz T (2019) Comparison of superelastic nitinol stapes prostheses and platin teflon stapes prostheses. Eur Arch Otorhinolaryngol 276(9):2405–2409. https://doi.org/10.1007/s00405-019-05476-8
doi: 10.1007/s00405-019-05476-8
pubmed: 31119372
Brase C, Zenk J, Wurm J et al (2009) Steigbügelchirurgie: erste erfahrungen mit dem einsatz des neuen Soft-CliP®-Pistons. HNO 57(5):509–513. https://doi.org/10.1007/s00106-009-1899-y
doi: 10.1007/s00106-009-1899-y
pubmed: 19384538
Pudel EI, Briggs RJS (2008) Laser-assisted stapedotomy with a Nitinol heat-crimping prosthesis: outcomes compared with a platinum fluoroplastic prosthesis. Otolaryngol Head Neck Surg 139(1):51–54. https://doi.org/10.1016/j.otohns.2008.03.018
doi: 10.1016/j.otohns.2008.03.018
pubmed: 18585561
Huber AM, Veraguth D, Schmid S et al (2008) Tight stapes prosthesis fixation leads to better functional results in otosclerosis surgery. Otol Neurotol 29(7):893–899. https://doi.org/10.1097/MAO.0b013e318184f4f0
doi: 10.1097/MAO.0b013e318184f4f0
pubmed: 18667934
DIN EN ISO 8253-1:2011-04, Akustik—Audiometrische Prüfverfahren—Teil 1: Grundlegende Verfahren der Luft- und Knochenleitungs-Schwellenaudiometrie mit Reinen Tönen (ISO 8253-1:2010); Deutsche Fassung EN ISO 8253-1:2010. Beuth Verlag GmbH. https://doi.org/10.31030/1705319
Committee on hearing and equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss (1995) Otolaryngol Head Neck Surg 113(3):186–187. https://doi.org/10.1016/S0194-5998(95)70103-6
de Bruijn AJ, Tange RA, Dreschler WA (2001) Efficacy of evaluation of audiometric results after stapes surgery in otosclerosis. I. The effects of using different audiologic parameters and criteria on success rates. Otolaryngol Head Neck Surg 124(1):76–83. https://doi.org/10.1067/mhn.2001.111601
doi: 10.1067/mhn.2001.111601
pubmed: 11228458
Scarpa A, Ralli M, Cassandro C et al (2020) Inner-ear disorders presenting with air-bone gaps: a review. J Int Adv Otol 16(1):111–116. https://doi.org/10.5152/iao.2020.7764
doi: 10.5152/iao.2020.7764
pubmed: 32401207
pmcid: 7224429
Dauman R (2013) Bone conduction: an explanation for this phenomenon comprising complex mechanisms. Eur Ann Otorhinolaryngol Head Neck Dis 130(4):209–213. https://doi.org/10.1016/j.anorl.2012.11.002
doi: 10.1016/j.anorl.2012.11.002
pubmed: 23743177
Stenfelt S (2015) Inner ear contribution to bone conduction hearing in the human. Hear Res 329:41–51. https://doi.org/10.1016/j.heares.2014.12.003
doi: 10.1016/j.heares.2014.12.003
pubmed: 25528492
Lamblin E, Karkas A, Jund J et al (2021) Is the Carhart notch a predictive factor of hearing results after stapedectomy? Acta Otorhinolaryngol Ital 41(1):84–90. https://doi.org/10.14639/0392-100X-N0213
doi: 10.14639/0392-100X-N0213
pubmed: 33746227
pmcid: 7982757
Büchner A, Schüssler M, Battmer RD et al (2009) Impact of low-frequency hearing. Audiol Neurootol 14(Suppl 1):8–13. https://doi.org/10.1159/000206490
doi: 10.1159/000206490
pubmed: 19390170
Metasch M-L, Plontke SK, Zirkler J et al (2018) Diagnostik und operative therapie der otosklerose. Laryngorhinootologie 97(8):563–578. https://doi.org/10.1055/a-0589-3613
doi: 10.1055/a-0589-3613
pubmed: 30081417
Lavy J, McClenaghan F (2018) Stapes surgery in patients with a small air-bone gap. Ear Nose Throat J 97(7):198–212. https://doi.org/10.1177/014556131809700709
doi: 10.1177/014556131809700709
pubmed: 30036432
Job K, Wiatr A, Skladzien J et al (2021) The audiometric assessment of the effectiveness of surgical treatment of otosclerosis depending on the preoperative incidence of Carhart’s notch. Ear Nose Throat J. https://doi.org/10.1177/01455613211043685
doi: 10.1177/01455613211043685
pubmed: 34633243
Lagasse P, Goldman L, Hobson A, Norton SR, eds. (2000–2006) The Columbia Encyclopedia, 6th edn. Columbia University Press
Luers JC, Hüttenbrink K-B (2016) Surgical anatomy and pathology of the middle ear. J Anat 228(2):338–353. https://doi.org/10.1111/joa.12389
doi: 10.1111/joa.12389
pubmed: 26482007
Wegner I, Swartz JE, Bance ML et al (2016) A systematic review of the effect of different crimping techniques in stapes surgery for otosclerosis. Laryngoscope 126(5):1207–1217. https://doi.org/10.1002/lary.25586
doi: 10.1002/lary.25586
pubmed: 26333166
Tange RA, Grolman W (2008) An analysis of the air-bone gap closure obtained by a crimping and a non-crimping titanium stapes prosthesis in otosclerosis. Auris Nasus Larynx 35(2):181–184. https://doi.org/10.1016/j.anl.2007.04.007
doi: 10.1016/j.anl.2007.04.007
pubmed: 18022336
Dobrev I, Sim JH, Aqtashi B et al (2018) Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor. Hear Res 357:1–9. https://doi.org/10.1016/j.heares.2017.11.002
doi: 10.1016/j.heares.2017.11.002
pubmed: 29149722
Alian W, Majdalawieh O, Kiefte M et al (2013) The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear. Otol Neurotol 34(8):1503–1509. https://doi.org/10.1097/MAO.0b013e3182923ed0
doi: 10.1097/MAO.0b013e3182923ed0
pubmed: 23928510