Interaction of Polystyrene Nanoparticles with Supported Lipid Bilayers: Impact of Nanoparticle Size and Protein Corona.
human serum albumin
lipid bilayer
nanoparticle size
polystyrene nanoparticle
protein corona
transferrin
Journal
Macromolecular bioscience
ISSN: 1616-5195
Titre abrégé: Macromol Biosci
Pays: Germany
ID NLM: 101135941
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
23
12
2022
received:
31
10
2022
medline:
21
8
2023
pubmed:
29
1
2023
entrez:
28
1
2023
Statut:
ppublish
Résumé
Polystyrene is one of the most widely used plastics. This article reports on the interaction of 50 and 210 nm polystyrene nanoparticles (PSNPs) with human serum albumin (HSA) and transferrin (Tf), as well as their effect on supported lipid bilayers (SLBs), using experimental and theoretical approaches. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements show that the increase in diameter for the PSNP-protein bioconjugates depends on nanoparticle size and type of proteins. The circular dichroism (CD) spectroscopy results demonstrate that the proteins preserve their structures when they interact with PSNPs at physiological temperatures. The quartz crystal microbalance (QCM) technique reveals that PSNPs and their bioconjugates show no strong interactions with SLBs. On the contrary, the molecular dynamics simulations (MDS) show that both proteins bind strongly to the lipid bilayer (SLBs) when compared to their binding to a polystyrene surface model. The interaction is strongly dependent on the protein and lipid bilayer composition. Both the PSNPs and their bioconjugates show no toxicity in human umbilical vein endothelial (HUVEC) cells; however, bare 210 nm PSNPs and 50 nm PSNP-Tf bioconjugates show an increase in reactive oxygen species production. This study may be relevant for assessing the impact of plastics on health.
Identifiants
pubmed: 36707930
doi: 10.1002/mabi.202200464
doi:
Substances chimiques
Lipid Bilayers
0
Polystyrenes
0
Protein Corona
0
Plastics
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2200464Informations de copyright
© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
Références
a) S. Kihara, N. J. Van Der Heijden, C. K. Seal, J. P. Mata, A. E. Whitten, I. Köper, D. J. Mcgillivray, Bioconjugate Chem. 2019, 30, 1067;
b) A. Cózar, F. Echevarría, J. I. González-Gordillo, X. Irigoien, B. Úbeda, S. Hernández-León, Á. T. Palma, S. Navarro, J. García-De-Lomas, A. Ruiz, M. L. Fernández-De-Puelles, C. M. Duarte, Proc. Natl. Acad. Sci. USA 2014, 111, 10239.
R. Lehner, C. Weder, A. Petri-Fink, B. Rothen-Rutishauser, Environ. Sci. Technol. 2019, 53, 1748.
S. Lambert, M. Wagner, Chemosphere 2016, 145, 265.
B. Stephens, P. Azimi, Z. El Orch, T. Ramos, Atmos. Environ. 2013, 79, 334.
H. Zhang, Y.u-Y. Kuo, A. C. Gerecke, J. Wang, Environ. Sci. Technol. 2012, 46, 10990.
C. D. Walkey, W. C. W. Chan, Chem. Soc. Rev. 2012, 41, 2780.
V. H. Nguyen, B.-J. Lee, Int. J. Nanomed. 2017, 12, 3137.
S. Koutsopoulos, K. Patzsch, W. T. E. Bosker, W. Norde, Langmuir 2007, 23, 2000.
R. Cukalevski, M. Lundqvist, C. Oslakovic, B. Dahlbäck, S. Linse, T. Cedervall, Langmuir 2011, 27, 14360.
B. Meesaragandla, I. García, D. Biedenweg, J. Toro-Mendoza, I. Coluzza, L. M. Liz-Marzán, M. Delcea, Phys. Chem. Chem. Phys. 2020, 22, 4490.
B. Meesaragandla, S. Hayet, T. Fine, U. Janke, L. Chai, M. Delcea, ACS Appl. Bio Mater. 2022, 5, 4213.
B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett. 2006, 6, 662.
E. Fröhlich, Int. J. Nanomed. 2012, 7, 5577.
E. S. Melby, C. Allen, I. U. Foreman-Ortiz, E. R. Caudill, T. R. Kuech, A. M. Vartanian, X.i Zhang, C. J. Murphy, R. Hernandez, J. A. Pedersen, Langmuir 2018, 34, 10793.
E. S. Melby, A. C. Mensch, S. E. Lohse, D. Hu, G. Orr, C. J. Murphy, R. J. Hamers, J. A. Pedersen, Environ. Sci.: Nano 2016, 3, 45.
Q. Wang, M. Lim, X. Liu, Z. Wang, K. L. Chen, Environ. Sci. Technol. 2016, 50, 2301.
a) C. Ge, J. Du, L. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. Zhou, Y. Zhao, Z. Chai, C. Chen, Proc. Natl. Acad. Sci. USA 2011, 108, 6968;
b) D. Drescher, G. Orts-Gil, G. Laube, K. Natte, R. W. Veh, W. Osterle, J. Kneipp, Anal. Bioanal. Chem. 2011, 400, 1367.
A. Lesniak, A. Salvati, M. J. Santos-Martinez, M. W. Radomski, K. A. Dawson, C. Åberg, J. Am. Chem. Soc. 2013, 135, 1438.
a) J. A. Kim, A. Salvati, C. Åberg, K. A. Dawson, Nanoscale 2014, 6, 14180;
b) M. P. Monopoli, C. Åberg, A. Salvati, K. A. Dawson, Nat. Nanotechnol. 2012, 7, 779.
M. Maciazek-Jurczyk, K. Janas, J. Pozycka, A. Szkudlarek, W. Rogóż, A. Owczarzy, K. Kulig, Molecules 2020, 25, 618.
C. A. Keller, K. Glasmästar, V. P. Zhdanov, B. Kasemo, Phys. Rev. Lett. 2000, 84, 5443.
C. A. Keller, B. Kasemo, Biophys. J. 1998, 75, 1397.
R. P. Richter, N. Maury, A. R. Brisson, Langmuir 2005, 21, 299.
M. Sundh, S. Svedhem, D. S. Sutherland, Phys. Chem. Chem. Phys. 2010, 12, 453.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
J. Huang, A. D. Mackerell, Jr, J. Comput. Chem. 2013, 34, 2135.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926.
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
C. W. Hopkins, S. Le Grand, R. C. Walker, A. E. Roitberg, J. Chem. Theory Comput. 2015, 11, 1864.
S. K. Burley, C. Bhikadiya, C. Bi, S. Bittrich, L. Chen, G. V. Crichlow, C. H. Christie, K. Dalenberg, L. Di Costanzo, J. M. Duarte, S. Dutta, Z. Feng, S. Ganesan, D. S. Goodsell, S. Ghosh, R. K. Green, V. Guranovic, D. Guzenko, B. P. Hudson, C. L. Lawson, Y. Liang, R. Lowe, H. Namkoong, E. Peisach, I. Persikova, C. Randle, A. Rose, Y. Rose, A. Sali, J. Segura, et al., Nucleic Acids Res. 2021, 49, D437.
The UniProt Consortium, Nucleic Acids Res. 2019, 47, 506.
J. Lee, D. S. Patel, J. Ståhle, S.-J. Park, N. R. Kern, S. Kim, J. Lee, X. Cheng, M. A. Valvano, O. Holst, Y. A. Knirel, Y. Qi, S. Jo, J. B. Klauda, G. Widmalm, W. Im, J. Chem. Theory Comput. 2019, 15, 775.
Y. K. Choi, S.-J. Park, S. Park, S. Kim, N. R. Kern, J. Lee, W. Im, J. Chem. Theory Comput. 2021, 17, 2431.
N. Geist, F. Nagel, M. Delcea, J. Biomol. Struct. Dyn. 2022, https://doi.org/10.1080/07391102.2022.2135138.