Cardiac toxicity associated with pharmacokinetic drug-drug interaction between crizotinib and sofosbuvir/velpatasvir: A case report.
Male
Humans
Aged
Sofosbuvir
/ adverse effects
Antiviral Agents
/ therapeutic use
Crizotinib
Carcinoma, Non-Small-Cell Lung
/ drug therapy
Cardiotoxicity
Cytochrome P-450 CYP3A
/ genetics
Hepatitis C, Chronic
/ drug therapy
Macrocyclic Compounds
/ therapeutic use
Lung Neoplasms
/ drug therapy
Hepacivirus
Genotype
Drug Therapy, Combination
P-glycoprotein
anticancer drugs
cytochrome P450 enzymes
drug interactions
therapeutic drug monitoring
Journal
British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
revised:
30
12
2022
received:
05
07
2022
accepted:
14
01
2023
pubmed:
30
1
2023
medline:
21
3
2023
entrez:
29
1
2023
Statut:
ppublish
Résumé
This case report describes a pharmacokinetic drug-drug interaction between crizotinib, a tyrosine kinase inhibitor, and sofosbuvir/velpatasvir, a direct-acting antiviral drug, leading to cardiac toxicity. A 75-year-old man, with no cardiovascular history but a diagnosis of metastatic nonsmall cell lung cancer with mesenchymal-epithelial transition exon-14 deletion and hepatitis C virus infection genotype 1A, received both crizotinib and sofosbuvir/velpatasvir. Crizotinib was well tolerated, but 1 week after sofosbuvir/velpatasvir initiation, the patient experienced bilateral lower-limb oedema and class III New York Heart Association dyspnoea. We assumed that increased exposure to crizotinib could account for this cardiac toxicity. Drug causality was probable according to the Naranjo scale. We hypothesized a reciprocal interaction between crizotinib and velpatasvir, mediated by both cytochrome 3A4 (CYP3A4) and P-glycoprotein (P-gp). Clinicians should be aware of the risk of drug-drug interactions between direct-acting antiviral agents that inhibit CYP3A4 (glecaprevir) and/or P-gp (voxilaprevir, velpatasvir) and anticancer tyrosine kinase inhibitors that are mostly CYP3A4 and/or P-gp substrates (gefitinib, afatinib, erlotinib, crizotinib, ceritinib, lorlatinib, brigatinib, capmatinib etc.).
Substances chimiques
Sofosbuvir
WJ6CA3ZU8B
Antiviral Agents
0
velpatasvir
KCU0C7RS7Z
Crizotinib
53AH36668S
Cytochrome P-450 CYP3A
EC 1.14.14.1
Macrocyclic Compounds
0
Types de publication
Case Reports
Langues
eng
Sous-ensembles de citation
IM
Pagination
1486-1490Informations de copyright
© 2023 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Références
Torres HA, Shigle TL, Hammoudi N, et al. The oncologic burden of hepatitis C virus infection: a clinical perspective. CA Cancer J Clin. 2017;67(5):411-431. doi:10.3322/caac.21403
Garrison KL, German P, Mogalian E, Mathias A. The drug-drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab Dispos. 2018;46(8):1212-1225. doi:10.1124/dmd.117.079038
Hamilton G, Rath B, Burghuber O. Pharmacokinetics of crizotinib in NSCLC patients. Expert Opin Drug Metab Toxicol. 2015;11(5):835-842. doi:10.1517/17425255.2015.1021685
Yu H, Steeghs N, Nijenhuis CM, Schellens JHM, Beijnen JH, Huitema ADR. Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53(4):305-325. doi:10.1007/s40262-014-0137-2
Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47-51. doi:10.1038/s41591-019-0716-8
Pfizer. Xalkori (crizotinib) 250 mg, hard capsules, Summary of product characteristics (SmPC). Pfizer Europe MA EEIG, Belgium (2012 rev 23/10/2018).
Tartarone A, Gallucci G, Lazzari C, Lerose R, Lombardi L, Aieta M. Crizotinib-induced cardiotoxicity: the importance of a proactive monitoring and management. Future Oncol. 2015;11(14):2043-2048. doi:10.2217/fon.15.47
Smolders EJ, Jansen AME, ter Horst PGJ, Rockstroh J, Back DJ, Burger DM. Viral hepatitis C therapy: pharmacokinetic and pharmacodynamic considerations: a 2019 update. Clin Pharmacokinet. 2019;58(10):1237-1263. doi:10.1007/s40262-019-00774-0
Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-245. doi:10.1038/clpt.1981.154
Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152-161. doi:10.1097/FPC.0b013e3283385a1c
Girerd X, Hanon O, Anagnostopoulos K, Ciupek C, Mourad JJ, Consoli S. Assessment of antihypertensive compliance using a self-administered questionnaire: development and use in a hypertension clinic. Presse Med. 2001;30(21):1044-1048.
Mogalian E, German P, Kearney BP, et al. Use of multiple probes to assess transporter- and cytochrome P450-mediated drug-drug interaction potential of the pangenotypic HCV NS5A inhibitor velpatasvir. Clin Pharmacokinet. 2016;55(5):605-613. doi:10.1007/s40262-015-0334-7
Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol Drug Saf. 2004;13(8):519-523. doi:10.1002/pds.1001
Mir O, Blanchet B, Goldwasser F. Drug-induced effects on erlotinib metabolism. N Engl J Med. 2011;365(4):379-380. doi:10.1056/NEJMc1105083
Hong J, Wright RC, Partovi N, Yoshida EM, Hussaini T. Review of clinically relevant drug interactions with next generation hepatitis C direct-acting antiviral agents. J Clin Transl Hepatol. 2020;8(3):1-14. doi:10.14218/JCTH.2020.00034