Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients.

antiresorptives tooth eruption tooth formation tooth root

Journal

Orthodontics & craniofacial research
ISSN: 1601-6343
Titre abrégé: Orthod Craniofac Res
Pays: England
ID NLM: 101144387

Informations de publication

Date de publication:
30 Jan 2023
Historique:
revised: 09 01 2023
received: 03 11 2022
accepted: 24 01 2023
pubmed: 31 1 2023
medline: 31 1 2023
entrez: 30 1 2023
Statut: aheadofprint

Résumé

Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.

Identifiants

pubmed: 36714970
doi: 10.1111/ocr.12637
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIDCR NIH HHS
Pays : United States

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Craniofac Dev. 2015;115:157-186. doi:10.1016/bs.ctdb.2015.07.006
Takahashi A, Nagata M, Gupta A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci U S A. 2019;116(2):575-580. doi:10.1073/pnas.1810200115
Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87(5):414-434. doi:10.1177/154405910808700509
Baroncelli GI, Bertelloni S. The use of bisphosphonates in pediatrics. Horm Res Paediatr. 2014;82(5):290-302. doi:10.1159/000365889
Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677-692. doi:10.1016/j.bone.2010.11.020
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155-192. doi:10.1210/er.2007-0014
Soares AP, Santo RFD, Line SRP, et al. Bisphosphonates: pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development. Environ Toxicol Pharmacol. 2016;42:212-217. doi:10.1016/j.etap.2016.01.015
Nanci A. Ten Cate's Oral Histology-E-Book: Development, Structure, and Function. Elsevier Health Sciences; 2017.
Richman JM. Shedding new light on the mysteries of tooth eruption. Proc Natl Acad Sci U S A. 2019;116(2):353-355. doi:10.1073/pnas.1819412116
Nagata M, Ono N, Ono W. Mesenchymal progenitor regulation of tooth eruption: a view from PTHrP. J Dent Res. 2020;99(2):133-142. doi:10.1177/0022034519882692
Chai Y, Jiang XB, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127(8):1671-1679.
Marks SC Jr, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. 1984;29(4):311-322. doi:10.1016/0003-9969(84)90105-5
Marks SC Jr, Cahill DR. Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. J Oral Pathol. 1987;16(4):164-169. doi:10.1111/j.1600-0714.1987.tb02060.x
Cahill DR, Marks SC Jr. Tooth eruption: evidence for the central role of the dental follicle. J Oral Pathol. 1980;9(4):189-200. doi:10.1111/j.1600-0714.1980.tb00377.x
Zeichner-David M, Oishi K, Su ZY, et al. Role of Hertwig's epithelial root sheath cells in tooth root development. Dev Dyn. 2003;228(4):651-663. doi:10.1002/dvdy.10404
Huang XF, Bringas P, Slavkin HC, Chai Y. Fate of HERS during tooth root development. Dev Biol. 2009;334(1):22-30. doi:10.1016/j.ydbio.2009.06.034
Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development. Int J Oral Sci. 2012;4(4):177-181. doi:10.1038/ijos.2012.61
Luder HU. Malformations of the tooth root in humans. Front Physiol. 2015;6:6307. doi:10.3389/fphys.2015.00307
Liu Y, Feng JF, Li JY, Zhao H, Ho TV, Chai Y. An Nfic-hedgehog signaling cascade regulates tooth root development. Development. 2015;142(19):3374-3382. doi:10.1242/dev.127068
Wang Y, Cox MK, Coricor G, MacDougall M, Serra R. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol. 2013;382(1):27-37. doi:10.1016/j.ydbio.2013.08.003
Wang J, Muir AM, Ren YS, Massoudi D, Greenspan DS, Feng JQ. Essential roles of bone morphogenetic Protein-1 and mammalian Tolloid-like 1 in postnatal root dentin formation. J Endod. 2017;43(1):109-115. doi:10.1016/j.joen.2016.09.007
Kim TH, Bae CH, Lee JC, et al. β-Catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013;92(3):215-221. doi:10.1177/0022034512470137
Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES. Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res. 2015;94(3):439-445. doi:10.1177/0022034514567198
Kronenberg HM. PTHrP and skeletal development. Ann N Y Acad Sci. 2006;1068:1-13. doi:10.1196/annals.1346.002
Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018;563(7730):254-258. doi:10.1038/s41586-018-0662-5
Ono W, Sakagami N, Nishimori S, Ono N, Kronenberg HM. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun. 2016;7:11277. doi:10.1038/ncomms11277
Zhang JW, Liao LJ, Li YY, et al. Parathyroid hormone-related peptide (1-34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development. J Cell Physiol. 2019;234(7):11900-11911. doi:10.1002/jcp.27857
Nagata M, Chu AKY, Ono N, Welch JD, Ono W. Single-cell transcriptomic analysis reveals developmental relationships and specific markers of mouse periodontium cellular subsets. Front Dent Med. 2021;2:679937. doi:10.3389/fdmed.2021.679937
Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci U S A. 1998;95(20):11846-11851. doi:10.1073/pnas.95.20.11846
Cui C, Bi R, Liu W, et al. Role of PTH1R signaling in Prx1(+)mesenchymal progenitors during eruption. J Dent Res. 2020;99(11):1296-1305. doi:10.1177/0022034520934732
Nishimori S, O'Meara MJ, Castro CD, et al. Salt-inducible kinases dictate parathyroid hormone 1 receptor action in bone development and remodeling. J Clin Investig. 2019;129(12):5187-5203. doi:10.1172/jci130126
Yamashiro T, Aberg T, Levanon D, Groner Y, Thesleff I. Expression of Runx1, −2 and −3 during tooth, palate and craniofacial bone development. Mech Dev. 2002;119:S107-S110. doi:10.1016/s0925-4773(03)00101-1
Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773-779. doi:10.1016/s0092-8674(00)80260-3
Kreiborg S, Jensen BL. Tooth formation and eruption-lessons learnt from cleidocranial dysplasia. Eur J Oral Sci. 2018;126:72-80. doi:10.1111/eos.12418
Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755-764. doi:10.1016/s0092-8674(00)80258-5
Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765-771. doi:10.1016/s0092-8674(00)80259-7
Yoda S, Suda N, Kitahara Y, Komori T, Ohyama K. Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol. 2004;49(6):435-442. doi:10.1016/j.archoralbio.2004.01.010
Zou SJ, D'Souza RN, Ahlberg T, Bronckers A. Tooth eruption and cementum formation in the Runx2/Cbfa1 heterozygous mouse. Arch Oral Biol. 2003;48(9):673-677. doi:10.1016/s0003-9969(03)00135-3
Wen Q, Jing JJ, Han X, et al. Runx2 regulates mouse tooth root development via activation of WNT inhibitor NOTUM. J Bone Miner Res. 2020;35(11):2252-2264. doi:10.1002/jbmr.4120
Lungova V, Radlanski RJ, Tucker AS, Renz H, Misek I, Matalova E. Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J Anat. 2011;218(6):699-716. doi:10.1111/j.1469-7580.2011.01367.x
Jacome-Galarza CE, Percin GI, Muller JT, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541-545. doi:10.1038/s41586-019-1105-7
Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 2018;114:161-171. doi:10.1016/j.bone.2017.12.026
Castaneda B, Simon Y, Jacques J, et al. Bone resorption control of tooth eruption and root morphogenesis: involvement of the receptor activator of NF-kappa B (RANK). J Cell Physiol. 2011;226(1):74-85. doi:10.1002/jcp.22305
Vargas-Franco JW, Castaneda B, Gama A, et al. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol. 2019;168:133-148. doi:10.1016/j.bcp.2019.06.027
Bhatt RN, Hibbert SA, Munns CF. The use of bisphosphonates in children: review of the literature and guidelines for dental management. Aust Dent J. 2014;59(1):9-19. doi:10.1111/adj.12140
Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014;7:Cd005088. doi:10.1002/14651858.CD005088.pub3
Hernandez M, Phulpin B, Mansuy L, Droz D. Use of new targeted cancer therapies in children: effects on dental development and risk of jaw osteonecrosis: a review. J Oral Pathol Med. 2017;46(5):321-326. doi:10.1111/jop.12516
Kamoun-Goldrat A, Ginisty D, Le Merrer M. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur J Oral Sci. 2008;116(3):195-198. doi:10.1111/j.1600-0722.2008.00529.x
Vuorimies I, Arponen H, Valta H, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29-33. doi:10.1016/j.bone.2016.10.004
Malmgren B, Tsilingaridis G, Monsef-Johansson N, Al Qahtani ZH, Dahllof G, Astrom E. Bisphosphonate therapy and tooth development in children and adolescents with osteogenesis imperfecta. Calcif Tissue Int. 2020;107(2):143-150. doi:10.1007/s00223-020-00707-1
Malmgren B, Thesleff I, Dahllof G, Astrom E, Tsilingaridis G. Abnormalities in tooth formation after early bisphosphonate treatment in children with osteogenesis imperfecta. Calcif Tissue Int. 2021;109(2):121-131. doi:10.1007/s00223-021-00835-2
Taqi D, Moussa H, Schwinghamer T, et al. Missing and unerupted teeth in osteogenesis imperfecta. Bone. 2021;150:116011. doi:10.1016/j.bone.2021.116011
Grier RL, Wise GE. Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res. 1998;77(1):8-15. doi:10.1177/00220345980770011201
Tuncer I, Delilbasi C, Deniz E, Soluk Tekkesin M, Olgac V, Sencift K. Effects of pamidronate administration on tooth eruption and mandibular growth in new born rats. J Istanb Univ Fac Dent. 2017;51(1):8-14. doi:10.17096/jiufd.16663
Hiraga T, Ninomiya T, Hosoya A, Nakamura H. Administration of the bisphosphonate zoledronic acid during tooth development inhibits tooth eruption and formation and induces dental abnormalities in rats. Calcif Tissue Int. 2010;86(6):502-510. doi:10.1007/s00223-010-9366-z
Bradaschia-Correa V, Massa LF, Arana-Chavez VE. Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res. 2007;330(3):475-485. doi:10.1007/s00441-007-0499-y
Bradaschia-Correa V, Casado-Gomez I, Moreira MM, Ferreira LB, Arana-Chavez VE. Immunolocalization of Smad-4 in developing molar roots of alendronate-treated rats. Arch Oral Biol. 2013;58(11):1744-1750. doi:10.1016/j.archoralbio.2013.06.002
Bradaschia-Correa V, Moreira MM, Arana-Chavez VE. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats. Cell Tissue Res. 2013;353(1):79-86. doi:10.1007/s00441-013-1623-9
de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR. The anti-tumor effect of RANKL inhibition in malignant solid tumors-a systematic review. Cancer Treat Rev. 2018;62:18-28. doi:10.1016/j.ctrv.2017.10.010
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40:2. doi:10.1186/s41232-019-0111-3
Wise GE. Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 2009;12(2):67-73. doi:10.1111/j.1601-6343.2009.01439.x
Lezot F, Chesneau J, Battaglia S, et al. Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies. Bone. 2014;68:146-152. doi:10.1016/j.bone.2014.08.018
Lezot F, Chesneau J, Navet B, et al. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid. Bone. 2015;73:51-59. doi:10.1016/j.bone.2014.12.011
Isawa M, Karakawa A, Sakai N, et al. Biological effects of anti-RANKL antibody and Zoledronic acid on growth and tooth eruption in growing mice. Sci Rep. 2019;9:19895. doi:10.1038/s41598-019-56151-1
Pan BQ, Farrugia AN, To LB, et al. The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res. 2004;19(1):147-154. doi:10.1359/jbmr.2004.19.1.147
Zhu S, Haussling V, Aspera-Werz RH, et al. Bisphosphonates reduce smoking-induced osteoporotic-like alterations by regulating RANKL/OPG in an osteoblast and osteoclast co-culture model. Int J Mol Sci. 2021;22(1):53. doi:10.3390/ijms22010053
Wise GE, Lumpkin SJ, Huang H, Zhang Q. Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res. 2000;79(12):1937-1942. doi:10.1177/00220345000790120301
Lindahl K, Kindmark A, Rubin CJ, et al. Decreased fracture rate, pharmacogenetics and BMD response in 79 Swedish children with osteogenesis imperfecta types I, III and IV treated with pamidronate. Bone. 2016;87:11-18. doi:10.1016/j.bone.2016.02.015
Pan BQ, To LB, Farrugia AN, et al. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone. 2004;34(1):112-123. doi:10.1016/j.bone.2003.08.013
Basso FG, Turrioni APS, Hebling J, Costa CAD. Effects of zoledronic acid on odontoblast-like cells. Arch Oral Biol. 2013;58(5):467-473. doi:10.1016/j.archoralbio.2012.09.016
Chun YHP, Foster BL, Lukasavage PA, et al. Bisphosphonate modulates cementoblast behavior in vitro. J Periodontol. 2005;76(11):1890-1900. doi:10.1902/jop.2005.76.11.1890
Di Vito A, Chiarella E, Baudi F, et al. Dose-dependent effects of zoledronic acid on human periodontal ligament stem cells: an in vitro pilot study. Cell Transplant. 2020;29:963689720948497. doi:10.1177/0963689720948497
Rao A, Barkley D, Franca GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211-220. doi:10.1038/s41586-021-03634-9

Auteurs

Yuki Arai (Y)

Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA.

Jeryl D English (JD)

Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA.

Noriaki Ono (N)

Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA.

Wanida Ono (W)

Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA.

Classifications MeSH