Theoretical approaches for understanding the self-organized formation of the Golgi apparatus.

organelle physical simulation

Journal

Development, growth & differentiation
ISSN: 1440-169X
Titre abrégé: Dev Growth Differ
Pays: Japan
ID NLM: 0356504

Informations de publication

Date de publication:
Apr 2023
Historique:
revised: 10 01 2023
received: 30 10 2022
accepted: 27 01 2023
medline: 4 4 2023
pubmed: 1 2 2023
entrez: 31 1 2023
Statut: ppublish

Résumé

Eukaryotic cells fold their membranes into highly organized structures called membrane-bound organelles. Organelles display characteristic structures and perform specialized functions related to their structures. Focusing on the Golgi apparatus, we provide an overview of recent theoretical studies to explain the mechanism of the architecture of the Golgi apparatus. These studies are classified into two categories: those that use equilibrium models to describe the robust Golgi morphology and those that use non-equilibrium models to explain the stationarity of the Golgi structures and the constant streaming of membrane traffic. A combinational model of both categories was used for computational reconstruction of the de novo Golgi formation process, which might provide an insight into the integrated understanding of the Golgi structure.

Identifiants

pubmed: 36718582
doi: 10.1111/dgd.12842
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

161-166

Informations de copyright

© 2023 The Author. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

Références

Campelo, F., van Galen, J., Turacchio, G., Parashuraman, S., Kozlov, M. M., Garcı'a-Parajo, M. F., & Malhotra, V. (2017). Sphingomyelin metabolism controls the shape and function of the golgi cisternae. eLife, 6, e24603.
Day, K. J., Staehelin, L. A., & Glick, B. S. (2013). A three-stage model of Golgi structure and function. Histochemistory and Cell Biology, 140, 239-249.
Derganc, J. (2007). Curvature-driven lateral segregation of membrane constituents in Golgi cisternae. Physical Biology, 4, 317-324.
Derganc, J., Mironov, A. A., & Svetina, S. (2006). Physical factors that affect the number and size of Golgi cisternae. Traffic, 7, 85-96.
Dmitrieff, S., Rao, M., & Sens, P. (2013). Quantitative analysis of intra-Golgi transport shows intercisternal exchange for all cargo. The Proceedings of the National Academy of Sciences, 110(39), 15692-15697.
Dunlop, M. H., Ernst, A. M., Schroeder, L. K., Toomre, D. K., Lavieu, G., & Rothman, J. E. (2017). Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nature Communications, 8, 432.
Glick, B. S., & Nakano, A. (2009). Membrane traffic within the Golgi apparatus. Annual Review of Cell and Developmental Biology, 25, 113-132.
Gong, H., Sengupta, D., Linstedt, A. D., & Schwartz, R. (2008). Simulated De novo assembly of Golgi compartments by selective cargo capture during vesicle budding and targeted vesicle fusion. Biophysical Journal, 95, 1674-1688.
Ha, K. D., Clarke, B. A., & Brown, W. J. (2012). Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochimica et Biophysica Acta, 1821, 1078-1088.
Hawes, C., Schoberer, J., Hummel, E., & Osterrieder, A. (2010). Biogenesis of the plant Golgi apparatus. Biochemical Society Transaction, 38(3), 761-767.
Helfrich, W. (1973). Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung, 1973(28c), 693-703.
Iglic, A., Fosnaric, M., Hagerstrand, H., & Kralj-Iglic, V. (2004). Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Letters, 574, 9-12.
Ispolatov, I., & Musch, A. (2013). A model for the self-Organization of Vesicular Flux and Protein Distributions in the Golgi apparatus. PLoS Computational Biology, 9(7), e1003125.
Jackson, L. P. (2014). Structure and mechanism of COPI vesicle biogenesis. Current Opinion in Cell Biology, 29, 67-73.
Jarić, M., Seifert, U., Wintz, W., & Wortis, M. (1995). Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Physical Review E, 52, 6623-6634.
Klumperman, J. (2011). Architecture of the mammalian Golgi. Cold Spring Harbor Perspectives in Biology, 3(7), a005181.
Klute, M. J., Melancon, P., & Dacks, J. B. (2011). Evolution and diversity of the Golgi. Cold Spring Harbor Perspectives in Biology, 3(7), a007849.
Kuhnle, J., Shillcock, J., Mouritsen, O. G., & Weiss, M. (2010). A modeling approach to the self-assembly of the Golgi apparatus. Biophysical Journal, 98, 2839-2847.
Losev, E., Reinke, C. A., Jellen, J., Strongin, D. E., Bevis, B. J., & Glick, B. S. (2006). Golgi maturation visualized in living yeast. Nature, 441(7096), 1002-1006.
Lucocq, J. M., & Warren, G. (1987). Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO Journal, 6, 3239-3246.
Matsuura-Tokita, K., Takeuchi, M., Ichihara, A., Mikuriya, K., & Nakano, A. (2006). Live imaging of yeast Golgi cisternal maturation. Nature, 441(7096), 1007-1010.
Mullins, C. (2005). The biogenesis of cellular organelles. Springer.
Nakano, A. (2022). The Golgi apparatus and its next-door neighbors. Frontiers in Cell and Developmental Biology, 10, 884360.
Pelletier, L., Stern, C. A., Pypaert, M., Sheff, D., Ngo, H. M., Roper, N., He, C. Y., Hu, K., Toomre, D., Coppens, I., Roos, D. S., Joiner, K. A., & Warren, G. (2002). Golgi biogenesis in Toxoplasma gondii. Nature, 418, 548-552.
Phillips, R., Kondev, J., & Theriot, J. (2013). Physical biology of the cell. Garland Science.
Polishchuk, R. S., & Mironov, A. A. (2004). Structural aspects of Golgi function. Cellular and Molecular Life Sciences, 61, 146-158.
Rabouille, C., Misteli, T., Watson, R., & Warren, G. (1995). Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. Journal of Cell Biology, 129(3), 605-618.
Ramirez, I. B. R., & Lowe, M. (2009). Golgins and GRASPs: Holding the Golgi together. Seminars in Cell and Developmental Biology, 20(7), 770-779.
Sachdeva, H., Barma, M., & Rao, M. (2011). Multispecies model with interconversion, chipping, and injection. Physical Review E, 84, 031106.
Sachdeva, H., Barma, M., & Rao, M. (2016). Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae. Scientific Reports, 6, 38840.
Sakai, Y., Koyama-Honda, I., Tachikawa, M., Knorr, R. L., & Mizushima, N. (2020). Modeling morphological change during autophagosome formation. iScience, 23(9), 101466.
Sens, P., & Rao, M. (2013). (Re) modeling the Golgi. Methods in Cell Biology, 118, 299-310.
Tachikawa, M., & Mochizuki, A. (2017). Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. The Proceedings of the National Academy of Sciences, 114(20), 5177-5182.
Tan, D., Xiang, Y., & Wang, Y. (2010). Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system. Nature Protocols, 5, 758-772.
Tojima, T., Suda, Y., Ishii, M., Kurokawa, K., & Nakano, A. (2019). Spatiotemporal dissection of the trans-Golgi network in budding yeast. Journal of Cell Science, 132(15), jcs231159.
Vagne, Q., Vrel, J. P., & Sens, P. (2020). A minimal self-organisation model of the Golgi apparatus. eLife, 9, e47318.

Auteurs

Masashi Tachikawa (M)

Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.
PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Japan.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Cities China Government Conservation of Natural Resources Humans
Models, Theoretical Computer Simulation Software Water Movements

Classifications MeSH