Early Detection of Primary Open Angle, Angle Closure, and Normal Tension Glaucoma in an Asian Population Using Optical Coherence Tomography.
Journal
Journal of glaucoma
ISSN: 1536-481X
Titre abrégé: J Glaucoma
Pays: United States
ID NLM: 9300903
Informations de publication
Date de publication:
01 03 2023
01 03 2023
Historique:
received:
28
03
2022
accepted:
29
11
2022
pubmed:
3
2
2023
medline:
9
3
2023
entrez:
2
2
2023
Statut:
ppublish
Résumé
Spectral-domain optical coherence tomography (SD-OCT) facilitates early glaucoma detection in the Chinese population in Taiwan. The best parameters for primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG), normal tension glaucoma (NTG), and suspected glaucoma (GS) detection are temporal inferior Bruch's membrane opening-minimum rim width (BMO-MRW), inner temporal macular ganglion cell layer (mGCL), temporal superior Circumpapillary retinal nerve fiber layer (cpRNFL), and mean global BMO-MRW, respectively. We investigated the diagnostic capability of SD-OCT for different types of early glaucoma among the Chinese population in Taiwan. One eye each was assessed from 113 individuals with healthy eyes, 125 individuals with suspected glaucoma (GS), and 156 patients with early glaucoma (POAG, 87; PACG, 50; and NTG, 19). Circumpapillary (cp) RNFL thickness (global and sectoral), BMO-MRW, and macular parameters, including the macular RNFL (mRNFL), mGCL, and macular inner plexiform layer (mIPL), were assessed using SD-OCT. The areas under receiver operator characteristic curves (AUCs) were calculated to evaluate the diagnostic capacity of the parameters to differentiate between healthy and early glaucomatous eyes. The parameters most suitable for detecting early POAG, PACG, NTG, and GS were temporal inferior BMO-MRW (AUC, 0.847), inner temporal mGCL (AUC, 0.770), temporal superior cpRNFL (AUC, 0.861), and mean global BMO-MRW (AUC, 0.768), respectively. Among the macular parameters, the mGCL exhibited the highest diagnostic capacity. The diagnostic capacity of the mGCL was lower than that of cpRNFL and BMO-MRW for POAG and NTG but not PACG. After adjusting for confounding variables in multivariable analysis, the AUC was determined to be 0.935 for POAG and 0.787 for GS. SD-OCT facilitates the detection of early POAG, PACG, and NTG. Using a combination of cpRNFL, BMO-MRW, and macular parameters may enhance their diagnostic capacities. Further studies are necessary to validate these findings.
Identifiants
pubmed: 36729693
doi: 10.1097/IJG.0000000000002160
pii: 00061198-202303000-00009
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
195-203Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
Disclosure: The authors declare no conflict of interest.
Références
Sommer A, Quigley HA, Robin AL, et al. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–1771.
Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–464.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901–1911.
Wang Y, Alnwisi S, Ke M. The impact of mild, moderate, and severe visual field loss in glaucoma on patients’ quality of life measured via the Glaucoma Quality of Life-15 Questionnaire: A meta-analysis. Medicine (Baltimore). 2017;96:e8019.
Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–146.
Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.
Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105:224–231.
Ojima T, Tanabe T, Hangai M, et al. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol. 2007;51:197–203.
Martinez-de-la-Casa JM, Cifuentes-Canorea P, Berrozpe C, et al. Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. Invest Ophthalmol Vis Sci. 2014;55:8343–8348.
Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci. 2011;52:3338–3344.
Ghasia FF, El-Dairi M, Freedman SF, et al. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55–63.
Wu H, de Boer JF, Chen TC. Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. Am J Ophthalmol. 2012;153:815–826 e812.
Dave P, Shah J. Diagnostic accuracy of posterior pole asymmetry analysis parameters of spectralis optical coherence tomography in detecting early unilateral glaucoma. Indian J Ophthalmol. 2015;63:837–842.
Toshev AP, Lamparter J, Pfeiffer N, et al. Bruch’s membrane opening-minimum rim width assessment with spectral-domain optical coherence tomography performs better than confocal scanning laser ophthalmoscopy in discriminating early glaucoma patients from control subjects. J Glaucoma. 2017;26:27–33.
Bambo MP, Cameo B, Hernandez R, et al. Diagnostic ability of inner macular layers to discriminate early glaucomatous eyes using vertical and horizontal B-scan posterior pole protocols. PLoS ONE. 2018;13:e0198397.
Cifuentes-Canorea P, Ruiz-Medrano J, Gutierrez-Bonet R, et al. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients. PLoS ONE. 2018;13:e0196112.
Edlinger FSM, Schrems-Hoesl LM, Mardin CY, et al. Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2018;256:1245–1256.
Michelessi M, Riva I, Martini E, et al. Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study. Acta Ophthalmol. 2019;97:e207–e215.
Caprioli J, Park HJ, Ugurlu S, et al. Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophthalmol Vis Sci. 1998;39:2321–2328.
Hodapp EPRI, Anderson DR. Clinical decisions in glaucoma. St Louis: The CV Mosby Co; 1993.
Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6:89–95.
Grewal DS, Tanna AP. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol. 2013;24:150–161.
Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98 (suppl 2):ii15–ii19.
Leite MT, Rao HL, Zangwill LM, et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118:1334–1339.
Wu H, de Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma. 2011;20:470–476.
Serbecic N, Beutelspacher SC, Aboul-Enein FC, et al. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol. 2011;95:804–810.
Park K, Kim J, Lee J. Reproducibility of Bruch membrane opening-minimum rim width measurements with spectral domain optical coherence tomography. J Glaucoma. 2017;26:1041–1050.
Reis ASC, Zangalli CES, Abe RY, et al. Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography. Acta Ophthalmol. 2017;95:e548–e555.
Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS ONE. 2015;10:e0129005.
Hashmani N, Hashmani S, Murad A, et al. Assessing reproducibility and the effects of demographic variables on the normal macular layers using the Spectralis SD-OCT. Clin Ophthalmol. 2018;12:1433–1440.
Wu CW, Shen HL, Lu CJ, et al. Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT. Diagnostics. 2021;11:1718.
Wu CW, Chen HY, Chen JY, et al. Glaucoma detection using support vector machine method based on spectralis OCT. Diagnostics. 2022;12:391.
Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol. BMC Ophthalmol. 2020;20:35.
Mwanza JC, Warren JL, Budenz DL. Utility of combining spectral domain optical coherence tomography structural parameters for the diagnosis of early Glaucoma: a mini-review. Eye Vis. 2018;5:9.
Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119:731–737.