Age-specific risk factors for the prediction of obesity using a machine learning approach.
KNHANES
age-specific
gender-specific
machine learning
obesity prediction
risk factors
Journal
Frontiers in public health
ISSN: 2296-2565
Titre abrégé: Front Public Health
Pays: Switzerland
ID NLM: 101616579
Informations de publication
Date de publication:
2022
2022
Historique:
received:
21
07
2022
accepted:
06
12
2022
entrez:
3
2
2023
pubmed:
4
2
2023
medline:
7
2
2023
Statut:
epublish
Résumé
Machine Learning is a powerful tool to discover hidden information and relationships in various data-driven research fields. Obesity is an extremely complex topic, involving biological, physiological, psychological, and environmental factors. One successful approach to the topic is machine learning frameworks, which can reveal complex and essential risk factors of obesity. Over the last two decades, the obese population (BMI of above 23) in Korea has grown. The purpose of this study is to identify risk factors that predict obesity using machine learning classifiers and identify the algorithm with the best accuracy among classifiers used for obesity prediction. This work will allow people to assess obesity risk from blood tests and blood pressure data based on the KNHANES, which used data constructed by the annual survey. Our data include a total of 21,100 participants (male 10,000 and female 11,100). We assess obesity prediction by utilizing six machine learning algorithms. We explore age- and gender-specific risk factors of obesity for adults (19-79 years old). Our results highlight the four most significant features in all age-gender groups for predicting obesity: triglycerides, ALT (SGPT), glycated hemoglobin, and uric acid. Our findings show that the risk factors for obesity are sensitive to age and gender under different machine learning algorithms. Performance is highest for the 19-39 age group of both genders, with over 70% accuracy and AUC, while the 60-79 age group shows around 65% accuracy and AUC. For the 40-59 age groups, the proposed algorithm achieved over 70% in AUC, but for the female participants, it achieved lower than 70% accuracy. For all classifiers and age groups, there is no big difference in the accuracy ratio when the number of features is more than six; however, the accuracy ratio decreased in the female 19-39 age group.
Identifiants
pubmed: 36733276
doi: 10.3389/fpubh.2022.998782
pmc: PMC9887184
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
998782Informations de copyright
Copyright © 2023 Jeon, Lee and Oh.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Front Nutr. 2021 Jun 21;8:669155
pubmed: 34235168
Epidemiol Health. 2014 Apr 30;36:e2014002
pubmed: 24839580
Nutrients. 2020 Aug 16;12(8):
pubmed: 32824342
J Nutr Health Aging. 2017;21(3):329-335
pubmed: 28244574
J Gastroenterol Hepatol. 2008 Jul;23(7 Pt 1):1089-93
pubmed: 18557801
PLoS One. 2020 Nov 30;15(11):e0243068
pubmed: 33253312
Nat Biotechnol. 2006 Dec;24(12):1565-7
pubmed: 17160063
Int J Environ Res Public Health. 2021 Apr 09;18(8):
pubmed: 33918760
Int J Chron Obstruct Pulmon Dis. 2017 Aug 21;12:2465-2475
pubmed: 28860741
Int J Epidemiol. 2014 Feb;43(1):69-77
pubmed: 24585853
J Clin Lab Anal. 2019 Sep;33(7):e22946
pubmed: 31241225
Mymensingh Med J. 2017 Apr;26(2):230-234
pubmed: 28588155
J Ayub Med Coll Abbottabad. 2010 Oct-Dec;22(4):74-7
pubmed: 22455266
Nat Mach Intell. 2020 Jan;2(1):56-67
pubmed: 32607472
Epidemiol Rev. 2007;29:1-5
pubmed: 17569676
Maturitas. 2011 Jul;69(3):220-9
pubmed: 21592692
Comput Biol Med. 2021 Sep;136:104754
pubmed: 34426171
Hepatology. 2004 Mar;39(3):754-63
pubmed: 14999694
Biomed Res Int. 2017;2017:7523960
pubmed: 28913357
Diabetes Nutr Metab. 2000 Jun;13(3):156-64
pubmed: 10963392
Sci Rep. 2020 Jun 30;10(1):10620
pubmed: 32606434
Mymensingh Med J. 2014 Apr;23(2):221-8
pubmed: 24858146
J Obes. 2012;2012:656303
pubmed: 23091705
Obes Res. 1995 Nov;3(6):563-71
pubmed: 8653533
N Engl J Med. 2017 Jul 6;377(1):13-27
pubmed: 28604169
J Obes. 2014;2014:637635
pubmed: 24669313
Mediators Inflamm. 2008;2008:834153
pubmed: 18385810
Obes Rev. 2018 May;19(5):668-685
pubmed: 29426065
BMC Bioinformatics. 2007 Jan 25;8:25
pubmed: 17254353
Nutrients. 2018 Dec 13;10(12):
pubmed: 30551656
J Clin Endocrinol Metab. 2008 Nov;93(11 Suppl 1):S74-80
pubmed: 18987273
Br J Sports Med. 2006 Aug;40(8):675-8; discussion 678
pubmed: 16723402
Mymensingh Med J. 2017 Jan;26(1):7-11
pubmed: 28260748
Eur J Haematol. 2021 Mar;106(3):306-319
pubmed: 33270290
Eur J Epidemiol. 2008;23(8):499-509
pubmed: 18509729